The presented paper describes a method developed by MTU Aero Engines to estimate the mass of turbine blades during multidisciplinary conceptual design studies based on a prescribed airfoil lifetime (Klingels, 2009, “Vordimensionierung von Turbinenschaufeln unter Berücksichtigung der Missionsanforderungen,” MTU Aero Engines, Technical Paper No. M09TET-0028, and Weisser, M., 2010, Erstellung und Implementierung eines erweiterten regelbasierten Verfahrens zur Schaufelauslegung mit Kühlluftmengenbestimmung in der Triebwerksvorauslegung, Diploma thesis, Institute of Aircraft Propulsion Systems, Universität Stuttgart, Stuttgart). For a given material, the target lifetime can be translated into a maximally allowable material temperature and stress level. While the latter has to be maintained by an appropriate mechanical design of the turbine blades, the material temperature needs to be established by sufficient cooling air. The predominant life-limiting effects are taken into account to determine the allowable temperatures and stresses as an accumulation of the varying operating condition over a flight cycle. The applicable stress levels are then used to calculate the necessary radial area distribution of the airfoil and by this a prediction of its mass is possible. Furthermore, the methodology estimates the required amount of cooling air per airfoil cascade from the computed material temperatures. Example calculations are presented and discussed which illustrate design trends and the benefits which are gained from the proposed method.

References

References
1.
Klingels
,
H.
, 2009, “
Vordimensionierung von Turbinenschaufeln unter Berücksichtigung der Missionsanforderungen
,” MTU Aero Engines, Technical Paper No. M09TET-0028.
2.
Weisser
,
M.
, 2010, “
Erstellung und Implementierung eines erweiterten regelbasierten Verfahrens zur Schaufelauslegung mit Kühlluftmengenbestimmung in der Triebwerksvorauslegung
,” Diploma thesis, Institute of Aircraft Propulsion Systems, Universität Stuttgart, Stuttgart, Germany.
3.
Tong
,
M. T.
, and
Naylor
,
B. A.
, 2008, “
An Object-Oriented Computer Code for Aircraft Engine Weight Estimation
,” ASME Paper No. GT2008-50062.
4.
Stricker
,
J. M.
, and
Norden
,
C. M.
, 1991, “
Computerized Preliminary Design of Turbomachinery
,” ASME Paper No. 91-GT-391.
5.
Jones
,
M. J.
,
Bradbrool
,
S. J.
, and
Nurney
,
K.
, 2002, “
A Preliminary Engine Design Process for an Affordable Capability
,” RTO AVT Symposium, Paris, France, Paper No. RTO-MP-089.
6.
Jeschke
,
P.
,
Kurzke
,
J.
,
Schaber
,
R.
, and
Riegler
,
C.
, 2002, “
Preliminary Gas Turbine Design Using the Multidisciplinary Design Tool MOPEDS
,” ASME Paper No. GT-2002-30496.
7.
Brophy
,
F.
,
Mah
,
S.
, and
Turcotte
,
J.
, 2009, “
Preliminary Multi-Diciplinary Optimization (PMDO) an Example at Engine Level
,”
ISABE Conference Proceedings
, Paper No. ISABE-2009-1228.
8.
Donus
,
F.
,
Schaber
,
R.
,
Schmidt
,
K.-J.
, and
Staudacher
,
S.
, 2010. “
Accuracy of Analytical Engine Weight Estimation During the Conceptual Design Phase
,” ASME Paper No. ASME GT2010-23774.
9.
Bretschneider
,
S.
, 2011. “
Knowledge-Based Preliminary Design of Aero-Engine Gas-Generators
,” Ph.D. thesis, Universität Stuttgart, Stuttgart, Germany.
10.
Kurzke
,
J.
, 2004,
Aero Engine Design a State of the Art - Preliminary Design (lecture script)
,
von Karman Institute
,
Rhode-St-Genese, Belgium
.
11.
Traupel
,
W.
, 2000,
Thermische Turbomaschinen: Zweiter Band
,
4th ed.
,
Springer-Verlag
,
Berlin
.
12.
Miner
,
M. A.
, 1945, “
Cumulative Damage in Fatigue
,”
J. Appl. Mech.
,
12
, pp.
159
164
.
13.
Bürgel
,
R.
, 2006,
Handbuch Hochtemperatur-Werkstofftechnik
,
3rd ed.
,
Vieweg + Teubner Verlag
,
Wiesbaden
, pp.
277
292
.
14.
Becker
,
G.
, and
Spyra
,
W.
, 1963, “
Verbesserung der Zunder- und Korrosionsbeständigkeit von Lauf- und Leitschaufeln in Erdöl- und Gichtgasgefeuerten Turbinen
,”DEW-Technische Berichte.
15.
Harada
,
H.
, 2003, “
High Temperature Materials for Gas Turbines: The Present and Future, Proceedings of the International Gas Turbine Congress 2003
.
16.
Ainley
,
D. G.
, 1957, “
Internal Air Cooling for Turbine Blades
,”
Aeronautical Reasearch Council Reports and Memo 3013
,
H.M.S.O.
,
London
.
17.
Halls
,
G. A.
, 1969, “
Air Cooling of Turbine Blades and Vanes
Supersonic Turbojet Propulsion Systems and Components, AGARDograph, Paris/Advisory Group for Aeronautical Research and Development, North Atlantic Treaty Organization, pp.
241
285
.
18.
Grieb
,
H.
, 2004,
Projektierung von Turboflugtriebwerken
,
1st ed.
,
Birkhäuser Verlag
,
Basel
.
19.
Horlock
,
J. H.
,
Watson
,
D. T.
, and
Jones
,
T. V.
, 2001, “
Limitations on Gas Turbine Performance Imposed by Large Turbine Cooling Flows
,”
Trans. ASME
,
123
, pp.
487
494
.
20.
Young
,
J. B.
, and
Wilcock
,
R. C.
, 2002, “
Modelling the Air-Cooled Gas Turbine: Part 2—Coolant Flows and Losses
,”
Trans. ASME
,
124
, pp.
214
221
.
21.
Holland
,
M. J.
, and
Thake
,
T. F.
, 1980, “
Rotor Blade Cooling in High Pressure Turbines
,”
J. Aircraft
,
17
(
6
), pp.
412
418
.
22.
Gauntner
,
J. W.
, 1980, “
Algorithm for Calculating Turbine Cooling Flow and the Resulting Decrease in Turbine Efficiency
,”NASA Technical Memorandum 81453.
23.
El-Masri
,
M. A.
, 1988, “
GASCAN—An Interactive Code for Thermal Analysis of Gas Turbine Systems
,”
Trans. ASME
110
, pp.
201
209
.
24.
Kurzke
,
J.
, 2007, “
Design and Off-Design Performance of Gas Turbines
,”
Gasturb 11 – User Manual
,
J.
Kurzke
,
Dachau
,
Germany
.
25.
Kawaike
,
K.
,
Kobayashi
,
N.
, and
Ikeguchi
,
T.
, 1984, “
Effect of New Blade Cooling System with Minimized Gas Temperature Dilution on Gas Turbine Performance
,”
ASME J. Eng. Gas Turbines Power
,
106
, pp.
766
764
.
You do not currently have access to this content.