A novel method for measurement selections of gas path diagnostics has been developed. This method is based on the singular value decomposition of the observability matrix of linear systems, which are a good approximation of the nonlinear ones for small deviations. It also employs the concept of the degree of observability to formulate the criteria. The states with high degree of observability and the measurement sets with high overall degree of observability result in high estimation accuracy in gas path diagnostics. A heavy-duty gas turbine model is used to validate this method. The influence of the gas turbine nonlinearity, the measurement noise, and the overdetermined measurement on degree of observability is analyzed. The overall degree of observability is calculated for different measurement sets of heavy-duty gas turbine. The gas path diagnostics simulations with different measurement sets using the weighted least-squares estimation method and the extended Kalman filter are conducted. The quality of gas path diagnostics simulation with different measurement sets is assessed and the results demonstrate the capability of the developed method for measurement selections in gas path diagnostics.

References

References
1.
Pinelli
,
M.
, and
Spina
,
P. R.
, 2002, “
Gas Turbine Field Performance Determination: Sources of Uncertainties
,”
ASME J. Eng. Gas Turbines Power
,
124
, pp.
155
160
.
2.
Sugiyama
,
N.
, 2000, “
System Identification of Jet Engines
,”
ASME J. Eng. Gas Turbines Power
,
122
, pp.
19
26
.
3.
Stamatis
,
M.
,
Mathioudakis
,
K.
, and
Papailiou
,
K.
, 1992, “
Optimal Measurement and Health Index Selection for Gas Turbine Performance Status and Fault Diagnosis
,”
ASME J. Eng. Gas Turbines Power
,
114
, pp.
209
216
.
4.
Mathioudakis
,
K.
, and
Kamboukos
,
Ph.
, 2006, “
Assessment of the Effectiveness of Gas Path Diagnostic Schemes
,”
ASME J. Eng. Gas Turbines Power
,
128
, pp.
57
63
.
5.
McCusker
,
J. R.
, and
Danai
,
K.
, 2010, “
Measurement Selection for Engine Transients by Parameter Signatures
,”
ASME J. Eng. Gas Turbines Power
,
132
, p.
121601
.
6.
Ogaji
,
S. O. T.
,
Sampath
,
S.
,
Singh
,
R.
, and
Probert
,
S. D.
, 2002, “
Parameter Selection for Diagnosing a Gas-Turbine’s Performance-Deterioration
,”
Appl. Energy
,
73
, pp.
25
46
.
7.
Mushini
,
R.
, and
Simon
,
D.
, 2005, “
On Optimization of Sensor Selection for Aircraft Gas Turbine Engines
,”
Proceeding of 18th International Conference on Systems Engineering
, pp.
9
18
.
8.
Sowers
,
T. S.
,
Kopasakis
,
G.
, and
Simon
,
D. L.
, 2008, “
Application of the Systematic Sensor Selection Strategy for Turbofan Engine Diagnostics
,” ASME Paper No. GT2008–50525.
9.
Espana
,
M. D.
, 1993, “
On the Estimation Algorithm for Adaptive Performance Optimization of Turbofan Engines
,” Paper No. AIAA-1993–1823.
10.
Goshen-Meskin
,
D.
, and
Bar-Itzhack
,
I. Y.
, 1992, “
Observability Analysis of Piece-Wise Constant Systems—Part I: Theory
,”
IEEE Trans. Aerosp. Electron. Syst.
,
28
, pp.
1056
1067
.
11.
Z.
Chen.
, 1991, “
Local Observability and Its Application to Multiple Measurement Estimation
,”
IEEE Trans. Ind. Electron.
,
38
, pp.
491
496
.
12.
Provost
,
M. J.
, 1994, “
The Use of Optimal Estimation Techniques in the Analysis of Gas Turbines
,” Ph.D. thesis, Cranfield University, Cranfield, UK.
13.
Borguet
,
S.
, and
Leonard
,
O.
, 2008, “
The Fisher Information Matrix as a Relevant Tool for Sensor Selection in Engine Health Monitoring
,”
Int. J. Rotating Mach.
,
2008
, p.
784749
.
14.
Yim
,
J. R.
, 2002, “
Autonomous Spacecraft Orbit Navigation
,” Ph.D thesis, Texas A&M University, College Station, TX.
15.
Hong
,
S.
,
Chun
,
H. H.
,
Kwon
,
S. H.
, and
Lee
,
M. H.
, 2008, “
Observability Measures and Their Application to GPS/INS
,”
IEEE Trans. Veh. Technol.
,
57
, pp.
97
106
.
16.
Ham
,
F. M.
, and
Brown
,
R. G.
, 1983, “
Observability, Eigenvalues, and Kalman Filtering
,”
IEEE Trans. Aerosp. Electron. Syst.
,
AES19
, pp.
269
273
.
17.
Golub.
H. G.
, and
Van Loan
,
C. F.
, 1996,
Matrix Computations
,
3rd ed.
,
Johns Hopkins University Press
,
Baltimore, MD
.
18.
Fan
,
W.
, and
Li
,
Y.
, 2009, “
Analysis on Observable Degree of Autonomous Spacecraft Orbit Navigation Based on SVD Method
,”
Aerospace Control’27
, pp. 50–55 (in Chinese).
19.
Jansen
,
M.
,
Schulenberg
,
T
,. and
Waldinger
,
D.
, 1992, “
Shop Test Result of the V64.3 Gas Turbine
,”
ASME J. Eng. Gas Turbines Power
,
114
, pp.
676
681
.
20.
Camporeale
,
S. M.
,
Fortunato
,
B.
, and
Mastrovito
,
M.
, 2006, “
A Modular Code for Real Time Dynamic Simulation of Gas Turbines in Simulink
,”
ASME J. Eng. Gas Turbines Power
,
128
, pp.
506
517
.
21.
Li
,
Y. G.
, 2010, “
Gas Turbine Performance and Health Status Estimation Using Adaptive Gas Path Analysis
,”
ASME J. Eng. Gas Turbines Power
,
132
, p.
041701
.
22.
Simon
,
D.
, and
Simon
,
D. L.
, 2005, “
Aircraft Turbofan Engine Health Estimation Using Constrained Kalman Filtering
,”
ASME J. Eng. Gas Turbines Power
,
127
, pp.
323
328
.
23.
Litt
,
J. S.
, 2008, “
An Optimal Orthogonal Decomposition Method for Kalman Filter-Based Turbofan Engine Thrust Estimation
,”
ASME J. Eng. Gas Turbines Power
,
130
, p.
011601
.
24.
Simon
,
D. L.
, and
Garg
,
S.
, 2010, “
Optimal Tuner Selection for Kalman Filter-Based Aircraft Engine Performance Estimation
,”
ASME J. Eng. Gas Turbines Power
,
132
, p.
031601
.
You do not currently have access to this content.