Ceramic turbines have long promised to enable higher fuel efficiencies by accommodating higher temperatures without cooling, yet no engines with ceramic rotors are in production today. Studies cite life, reliability, and cost obstacles, often concluding that further improvements in the materials are required. In this paper, we assume instead that the problems could be circumvented by adjusting the engine design. Detailed analyses are conducted for two key life-limiting processes, water vapor erosion and slow crack growth, seeking engine design strategies for mitigating their effects. We show that highly recuperated engines generate extremely low levels of water vapor erosion, enabling lives exceeding 10,000 hs, without environmental barrier coatings. Recuperated engines are highly efficient at low pressure ratios, making low blade speeds practical. Many ceramic demonstration engines have had design point mean blade speeds near 550 m/s. A CARES/Life analysis of an example rotor designed for about half this value indicates vast improvements in slow crack growth-limited life and reliability. Halving the blade speed also reduces foreign object damage particle kinetic energy by a factor of four. In applications requiring very high fuel efficiency that can accept a recuperator, or in short-life simple cycle engines, ceramic turbines are ready for application today.

References

References
1.
Richerson
,
D. W.
, 2006, “
Historical Review of Addressing the Challenges of use of Ceramic Components in Gas Turbine Engines
,”
Proceedings of the ASME Turbo Expo 2006
, Vol.
2
, pp.
241
254
.
2.
Smialek
,
J. L.
,
Robinson
,
R. C.
,
Opila
,
E. J.
,
Fox
,
D. S.
, and
Jacobson
,
N. S.
, 1999, “
SiC and Si3N4 Recession Due to SiO2 Scale Volatility Under Combustor Conditions
,”
Advanced Composite Materials
,
8
(
1
), p.
33
-45.
3.
Opila
,
E. J.
, 2003, “
Oxidation and Volatilization of Silica Formers in Water Vapor
,”
J. Am. Ceram. Soc.
,
86
(
8
), pp.
1238
1248
.
4.
Jacobson
,
N. S.
,
Opila
,
E. J.
, and
Lee
,
K. N.
, 2001, “
Oxidation and Corrosion of Ceramics and Ceramic Matrix Composites
,”
Curr. Opin. Solid State Mater. Sci.
,
5
(
4
), pp.
301
309
.
5.
Fox
,
D. S.
,
Opila
,
E. J.
,
Nguyen
,
Q. N.
,
Humphrey
,
D. L.
, and
Lewton
,
S. M.
, 2003, “
Paralinear Oxidation of Silicon Nitride in a Water-Vapor/Oxygen Environment
,”
J. Am. Ceram. Soc.
,
86
(
8
), pp.
1256
1261
.
6.
Opila
,
E. J.
,
Robinson
,
R. C.
,
Fox
,
D. S.
,
Wenglarz
,
R. A.
, and
Ferber
,
M. K.
, 2003, “
Additive Effects on Si3N4 Oxidation/Volatilization in Water Vapor
,”
J. Am. Ceram. Soc.
,
86
(
8
), pp.
1262
1271
.
7.
Lin
,
H. T.
, and
Ferber
,
M. K.
, 2002, “
Mechanical Reliability Evaluation of Silicon Nitride Ceramic Components After Exposure in Industrial Gas Turbines
,”
J. Eur. Ceram. Soc.
,
22
(
14–15
), pp.
2789
2797
.
8.
Lin
,
H.-T.
,
Ferber
,
M. K.
,
Westphal
,
W.
, and
Macri
,
F.
, 2002, “
Evaluation of Mechanical Reliability of Silicon Nitride Vanes After Field Tests in an Industrial Gas Turbine
,”
ASME Conference Proceedings
,
2002
(
36096
), pp.
147
154
.
9.
Ferber
,
M. K.
,
Lin
,
H. T.
,
Parathasarathy
,
V.
, and
Wenglarz
,
R. A.
, “
Degradation of Silicon Nitrides in High Pressure, Moisture Rich Environments
,” ASME Proc. IGTI Turbo Expo 2000.
10.
Ferber
,
M. K.
, 2005, “
International Energy Agency Implementing Agreement for a Programme of Research and Development on Advanced Materials for Transportation Applications, Annex II: Co-Operative Program on Ceramics for Advanced Engines and Other Conservation Applications; Burner Rig Round Robin—Subtask 13 Final Report
,” Oak Ridge National Laboratory. Available at: http://www.iea-ia-amt.org/psds/Subtask_13_Final_Sept05.pdfhttp://www.iea-ia-amt.org/psds/Subtask_13_Final_Sept05.pdf
11.
Jacobson
,
N. S.
, 1993, “
Corrosion of Silicon-Based Ceramics in Combustion Environments
,”
J. Am. Ceram. Soc.
,
76
(
1
), pp.
3
28
.
12.
Jacobson
,
N.
,
Myers
,
D.
,
Opila
,
E.
, and
Copland
,
E.
, 2005, “
Interactions of Water Vapor With Oxides at Elevated Temperatures
,”
J. Phys. Chem. Solids
,
66
(
2-4
), pp.
471
478
.
13.
Choi
,
S. R.
,
Pereira
,
J. M.
,
Janosik
,
L. A.
, and
Bhatt
,
R. T.
, 2004, “
Foreign Object Damage in Flexure Bars of Two Gas-Turbine Grade Silicon Nitrides
,”
Mater.Sci. Eng., A
,
379
(
1–2
), pp.
411
419
.
14.
Choi
,
S. R.
, 2009, “
Foreign Object Damage in Gas-Turbine Grade Silicon Nitrides by Silicon Nitride Ball Projectiles
,”
ASME Conference Proceedings
,
2009
(
48821
), pp.
241
248
.
15.
Choi
,
S. R.
,
Pereira
,
J. M.
,
Janosik
,
L. A.
, and
Bhatt
,
R. T.
, 2003, “
Foreign Object Damage of Two Gas-Turbine Grade Silicon Nitrides in a Thin Disk Configuration
,”
ASME Conference Proceedings
,
2003
(
36843
), pp.
597
606
.
16.
Choi
,
S. R.
,
Racz
,
Z.
,
Bhatt
,
R. T.
,
Brewer
,
D. N.
, and
Gyekenyesi
,
J. P.
, 2005, “
Effect of Projectile Materials on Foreign Object Damage of a Gas-Turbine Grade Silicon Nitride
,”
ASME Conference Proceedings
,
2005
(
46997
), pp.
339
349
. NASA Report No. NASA/TM-2006-214330.
18.
Moran
,
M. J.
, and
Shapiro
,
H. N.
, 1988,
Fundamentals of Engineering Thermodynamics
,
2nd ed.
,
Wiley
,
NY
.
19.
Wilson
,
D. G.
, and
Korakianitis
,
T.
, 1998,
The Design of High-Efficiency Turbomachinery and Gas Turbines
,
2nd ed.
,
Prentice-Hall
,
Upper Saddle River, NJ
.
20.
Vick
,
M. J.
,
Heyes
,
A.
, and
Pullen
,
K.
, 2010, “
Design Overview of a Three Kilowatt Recuperated Ceramic Turboshaft Engine
,”
J. Eng. Gas Turbines Power
,
132
(
9
), p.
092301
.
21.
CustomWeather Inc., 2012, “
Almanac: Historical Weather Information for Bangkok, Thailand
, www.myforecast.comwww.myforecast.com
22.
CARES/Life v. 9.0, 2010, Connecticut Reserve Technologies, Inc., Gates Mills, OH.
23.
Wereszczak
,
A. A.
, and
Jadaan
,
O.
, 2009, “
Reliability Analyses for the NRL Ceramic Rotor, Part I: Centrifugal Load
,” Oak Ridge National Laboratory, Oak Ridge, TN.
24.
Wereszczak
,
A. A.
, and
Jadaan
,
O.
, 2009, “Reliability Analyses for the NRL Ceramic Rotor, Part II: Transient Thermomechanical Load,” Oak Ridge National Laboratory, Oak Ridge, TN.
25.
Nemeth
,
N. N.
,
Jadaan
,
O. M.
, and
Gyekenyesi
,
J. P.
, 2005, “
Lifetime Reliability Prediction of Ceramic Structures Under Transient Thermomechanical Loads
,” NASA Glenn Research Center, Report No. NASA/TP-2005-212505, E-14061.
26.
Nemeth
,
N. N.
,
Jadaan
,
O. M.
,
Baker
,
E. H.
, and
Gyekenyesi
,
J. P.
, “
Lifetime Reliability Prediction of Ceramics Subjected to Thermal and Mechanical Cyclic Loads
,” ASME Turbo Expo 2007, Report No. GT2007-27047.
27.
Weibull
,
W. A.
, 1939, “
A Statistical Theory of the Strength of Materials
,” Ingenoirs Vetenskaps Akadanien Handlinger, Report No. 151.
28.
Freudenthal
,
A. M.
, 1968, “
Statistical Approach to Brittle Fracture
,”
Fracture, An Advanced Treatise
,
H.
Liebowitz
, ed.,
Academic
,
NY
, pp.
591
619
.
29.
Batdorf
,
S. B.
, and
Heinisch
,
H. L.
, Jr.
, 1978, “
Weakest Link Theory Reformulated for Arbitrary Fracture Criterion
,”
J. Am. Ceram. Soc.
,
61
(
7–8
), pp.
355
358
.
30.
Wiederhorn
,
S. M.
, 1974, “
Subcritical Crack Growth in Ceramaics
,”
Fracture Mechanics of Ceramics
,
R. C.
Bradt
,
D. P. H.
Hasselman
, and
F. F.
Lange
, eds.,
Plenum
,
NY
,pp.
613
646
.
31.
Jadaan
,
O. M.
, and
Nemeth
,
N. N.
, 2001, “
Transient Reliability of Ceramic Structures
,”
Fatigue Fract. Eng. Mater. Struct.
,
24
, pp.
475
487
.
32.
Hartstock
,
D. L.
2002, “
Ford’s Development of the 820 High Temperature Ceramic Gas Turbine Engine
,”
Ceramic Gas Turbine Design and Test Experience
,
M.
van Roode
,
M. K.
Ferber
, and
D. W.
Richerson
, eds.,
American Society of Mechanical Engineers
,
New York
,pp.
17
75
.
33.
Yoshida
,
H.
,
Chaudhri
,
M. M.
,
Fukudome
,
T.
, and
Tsuruzono
,
S.
, 2005, “
Impact Fracture Behavior of Turbine-Grade Silicon Nitride Ceramic Under Tensile Stress at Elevated Temperatures
,”
ASME Conference Proceedings
,
2005
(
46997
), pp.
241
245
.
34.
Wilson
,
D. G.
, 1997, “
A New Approach To Low-Cost High-Efficiency Automotive Gas Turbines
,” Society of Automotive Engineers, Report No. 970234.
35.
Foster
,
S.
, 2007, private communication.
36.
van Roode
,
M.
,
Ferber
,
M. K.
, and
Richerson
,
D. W.
, 2003, “
Ceramic Gas Turbine Component Development and Characterization
,” American Society of Mechanical Engineers (ASME), New York.
37.
Wilson
,
D. G.
, and
Korakianitis
,
T.
, 1998,
The Design of High-Efficiency Turbomachinery and Gas Turbines
,
Prentice-Hall
,
Upper Saddle River, NJ
.
38.
Wilson
,
D. G.
, 2002, “
The Basis for the Prediction of High Thermal Efficiency in W.T.P. I. Gas-Turbine Engines
,” Wilson TurboPower Inc. Available at: http://www.wilsonsolarpower.com/files/Efficiency_Basis_Paper.pdfhttp://www.wilsonsolarpower.com/files/Efficiency_Basis_Paper.pdf
39.
McDonald
,
C.
, 2003, “
Recuperator Considerations for Future Higher Efficiency Microturbines
,”
Appl. Therm. Eng.
,
23
(
12
), pp.
1463
1487
.
40.
McDonald
,
C.
, and
Rodgers
,
C.
, 2008, “
Small Recuperated Ceramic Microturbine Demonstrator Concept
,”
Appl. Therm. Eng.
,
28
(
1
), pp.
60
74
.
41.
McDonald
,
C. F.
, 2003, “
Recuperator Considerations for Future Higher Efficiency Microturbines
,”
Appl. Therm. Eng.
,
23
(
12
), pp.
1463
1487
.
42.
McDonald
,
C. F.
, 1990, “
Gas Turbine Recuperator Renaissance
,”
Heat Recovery Syst. CHP
,
10
(
1
), pp.
1
30
.
43.
McDonald
,
C. F.
, and
Rodgers
,
C.
, 2002, “
The Ubiquitous Personal Turbine—A Power Vision for the 21st Century
,”
J, Eng, Gas Turbines Power
,
124
(
4
), pp.
835
844
.
44.
McDonald
,
C. F.
, and
Wilson
,
D. G.
, 1996, “
The Utilization of Recuperated and Regenerated Engine Cycles for High-Efficiency Gas Turbines in the 21st Century
,”
Appl. Therm. Eng.
,
16
(
8-9
), pp.
635
653
.
45.
Opila
,
E. J.
, and
Hann
,
R. E.
, 1997, “
Paralinear Oxidation of CVD SiC in Water Vapor
,”
J. Am. Ceram. Soc.
,
80
(
1
), pp.
197
205
.
46.
Incropera
,
F. P.
, and
DeWitt
,
D. P.
, 2002,
Fundamentals of Heat and Mass Transfer
,
5th ed.
,
John Wiley & Sons
,
New York
, pp.
366
368
.
You do not currently have access to this content.