This paper evaluates strategies for reducing the intake temperature requirement for igniting biogas in homogeneous charge compression ignition (HCCI) engines. The HCCI combustion is a promising technology for stationary power generation using renewable fuels in combustion engines. Combustion of biogas in HCCI engines allows high thermal efficiency similar to diesel engines, with low net CO2 and low NOx emissions. However, in order to ensure the occurrence of autoignition in purely biogas fueled HCCI engines, a high inlet temperature is needed. This paper presents experimental and numerical results. First, the experimental analysis on a 4 cylinder, 1.9 L Volkswagen TDI diesel engine running with biogas in the HCCI mode shows high gross indicated mean effective pressure (close to 8 bar), high gross indicated efficiency (close to 45%) and NOx emissions below the 2010 US limit (0.27 g/kWh). Stable HCCI operation is experimentally demonstrated with a biogas composition of 60% CH4 and 40% CO2 on a volumetric basis, inlet pressures of 2–2.2 bar (absolute), and inlet temperatures of 200–210 °C for equivalence ratios between 0.19–0.29. At lower equivalence ratios, slight changes in the inlet pressure and temperature caused large changes in cycle-to-cycle variations, while at higher equivalence ratios these same small pressure and temperature variations caused large changes to the ringing intensity. Second, numerical simulations have been carried out to evaluate the effectiveness of high boost pressures and high compression ratios for reducing the inlet temperature requirements while attaining safe operation and high power output. The one zone model in Chemkin was used to evaluate the ignition timing and peak cylinder pressures with variations in temperatures at intake valve close (IVC) from 373 to 473 K. In-cylinder temperature profiles between IVC and ignition were computed using Fluent 6.3 and fed into the multizone model in Chemkin to study combustion parameters. According to the numerical results, the use of both higher boost pressures and higher compression ratios permit lower inlet temperatures within the safe limits experimentally observed and allow higher power output. However, the range of inlet temperatures allowing safe and efficient operation using these strategies is very narrow, and precise inlet temperature control is needed to ensure the best results.

References

References
1.
Huang
,
J.
, and
Crookes
,
R. J.
, 1998, “
Assessment of Simulated Biogas as a Fuel for the Spark Ignition Engine
,”
Fuel
,
77
(
15
), pp.
1793
1801
.
2.
Deublein
,
D.
, and
Steinhauser
,
A.
, 2008,
Biogas from Waste and Renewable Resources. An Introduction
,
Wiley-VCH
,
Weinheim, Germany
, Chap.
1
.
3.
US-EPA, 2011, “Market Opportunities for Biogas Recovery Systems at U.S. Livestock Facilities,” http://www.epa.gov/agstar/documents/biogas_recovery_systems_screenres.pdf.
4.
Pöschl
,
M.
,
Ward
,
S.
, and
Owende
,
P.
, 2010, “
Evaluation of Energy Efficiency of Various Biogas Production and Utilization Pathways
,”
Appl. Energy
,
87
, pp.
3305
3321
.
5.
Bedoya
,
I. D.
,
Arrieta
,
A. A.
, and
Cadavid
,
F. J.
, 2009, “
Effects of Mixing System and Pilot Fuel Quality on Diesel–Biogas Dual Fuel Engine Performance
,”
Bioresour. Technol.
,
100
, pp.
6624
6629
.
6.
Badr
,
O.
,
Karim
,
G. A.
, and
Liu
,
B.
, 1999, “
An Examination of the Flame Spread Limits in a Dual Fuel Engine
,”
Appl. Therm. Eng.
,
19
, pp.
1071
1080
.
7.
Richter
,
M.
,
Franke
,
A.
,
Alden
,
M.
,
Hultqvist
,
A.
, and
Johansson
,
B.
, 1999, “
Optical Diagnostics Applied to a Naturally Aspirated Homogeneous Charge Compression Ignition Engine
,” SAE Paper No. 1999-01-3649.
8.
Hultqvist
,
A.
,
Christensen
,
M.
,
Johansson
,
B.
,
Franke
,
A.
,
Richter
,
M.
, and
Alden
,
M.
, 1999, “
A Study of the Homogeneous Charge Compression Ignition Combustion Process by Chemiluminescence Imaging
,” SAE Paper No. 1999-01-3680.
9.
Christensen
,
M.
, and
Johansson
,
B.
, 1999, “
Homogeneous Charge Compression Ignition With Water Injection
,” SAE Paper No. 1999-01-0182.
10.
Dec
,
J. E.
, 2009, “
Advanced Compression-Ignition Engines—Understanding the In-Cylinder Processes
,”
Proc. Combust. Inst.
,
32
, pp.
2727
2742
.
11.
Stanglmaier
,
R. H.
, and
Roberts
,
C. E.
, 1999, “
Homogeneous Charge Compression Ignition (HCCI): Benefits, Compromises, and Future Engine Applications
,” SAE Paper No. 1999-01-3682.
12.
Nathan
,
S. S.
,
Mallikarjuna
,
J. M.
, and
Ramesh
,
A.
, 2010, “
An Experimental Study of the Biogas–Diesel HCCI Mode of Engine Operation
,”
Energy Convers. Manage.
,
51
, pp.
1347
1353
.
13.
Nathan
,
S. S.
,
Mallikrajuna
,
J. M.
, and
Ramesh
,
A.
, 2009, “
Homogeneous Charge Compression Ignition Versus Dual Fuelling for Utilizing Biogas in Compression Ignition Engines
,”
Proc. Inst. Mech. Eng.
, Part D (J. Automobile Eng.),
223
, pp.
413
422
.
14.
Markel
,
D. B.
, 2007, “
Land Fill Gas Fuelled HCCI Demonstration System
,” Technical Report No. CEC-500-2007-078,
California Energy Comission
, Chico, CA.
15.
Bedoya
,
I. D.
,
Saxena
,
S.
,
Cadavid
,
F. J.
,
Dibble
,
R. W.
, and
Wissink
,
M.
, 2012, “
Experimental Study of Biogas Combustion in an HCCI Engine for Power Generation With High Indicated Efficiency and Ultra-Low NOx Emissions
,”
Energy Convers. Manage.
,
52
(
1
), pp.
154
162
.
16.
Bedoya
,
I. D.
,
Saxena
,
S.
,
Cadavid
,
F. J.
,
Dibble
,
R. W.
, and
Wissink
,
M.
, 2011, “
Experimental Evaluation of Strategies to Increase the Operation Range of a Biogas HCCI Engine for Power Generation
,”
Third International Conference on Applied Energy-ICAE2011
,
Perugia
,
Italy
, pp.
2219
2244
.
17.
Bedoya
,
I. D.
,
Saxena
,
S.
,
Dibble
,
R. W.
, and
Cadavid
,
F. J.
, 2011, “
Exploring Optimal Operating Conditions for Stationary Power Generation from a Biogas-Fueled HCCI Engine
,”
7th U.S. National Technical Meeting of the Combustion Institute
,
Georgia Institute of Technology
,
Atlanta, GA
, pp.
2172
2177
.
18.
Easley
,
W. L.
,
Agarwal
,
A.
, and
Lavoie
,
G. A.
, 2001, “
Modeling of HCCI Combustion and Emissions Using Detailed Chemistry
,” SAE Paper No. 2001-01-1029.
19.
Jun
,
D.
,
Ishii
,
K.
, and
Iida
,
N.
, 2003, “
Autoignition and Combustion of Natural Gas in a 4 Stroke HCCI Engine
,”
JSME Int. J.
,
46
(
1
), pp.
60
67
.
20.
Kobayashi
,
H.
,
Hagiwara
,
H.
,
Kaneko
,
H.
, and
Ogami
,
Y.
, 2007, “
Effects of CO2 Dilution on Turbulent Premixed Flames at High Pressure and High Temperature
,”
Proc. Combust. Inst.
,
31
(
1
), pp.
1451
1458
.
21.
Aceves
,
S. M.
,
Flowers
,
D. L.
,
Westbrook
,
C. K.
,
Smith
,
J. R.
,
Pitz
,
W.
,
Dibble
,
R.
,
Christensen
,
M.
, and
Johansson
,
B.
, 2000, “
A Multi-Zone Model for Prediction of HCCI Combustion and Emissions
,” SAE Paper No. 2000-01-0327.
22.
Smith
G. P.
,
Golden
D. M.
,
Frenklach
M.
,
Moriarty
N. W.
,
Eiteneer
B.
,
Goldenberg
M.
,
Bowman
C. T.
,
Hanson
R. K.
,
Song
S.
,
Gardiner
W. C.
,
Lissianski
V. V.
, and
Qin
Z.
, “
GRI-Mech 3.0
,” http://www.me.berkeley.edu/gri-mech/http://www.me.berkeley.edu/gri-mech/.
23.
Woschni
,
G.
, 1967, “
Universally Applicable Equation for the Instantaneous Heat Transfer Coefficient in the Internal Combustion Engine
,” SAE Paper No. 670931.
24.
Soyhan
,
H. S.
,
Yasar
,
H.
,
Walmsley
,
H.
,
Head
,
B.
,
Kalghatgi
,
G. T.
, and
Sorusbay
,
C.
, 2009, “
Evaluation of Heat Transfer Correlations for HCCI Engine Modeling
,”
Appl. Therm. Eng.
,
29
(
2–3
), pp.
541
549
.
25.
Chang
,
J.
,
Güralp
,
O.
,
Filipi
,
Z.
,
Assanis
,
D.
,
Kuo
,
T.-W.
,
Najt
,
P.
, and
Rask
,
R.
, 2004, “
New Heat Transfer Correlation for an HCCI Engine Derived from Measurements of Instantaneous Surface Heat Flux
,” SAE Paper No. 2004-01-2996.
26.
M.
Sjöberg
, and
Dec
,
J. E.
, 2004, “
An Investigation of the Relationship Between Measured Intake Temperature, BDC Temperature, and Combustion Phasing for Premixed and DI HCCI Engines
,” SAE Paper No. 2004-01-1900.
27.
Aceves
,
S. M.
,
Flowers
,
D. L.
,
Martinez-Frias
,
J.
,
Smith
,
J. R.
,
Westbrook
,
C. K.
,
Pitz
,
W. J.
,
Dibble
,
R.
,
Wright
,
J. F.
,
Akinyemi
,
W. C.
, and
Hessel
,
R. P.
, 2001, “
A Sequential Fluid-Mechanic Chemical-Kinetic Model of Propane HCCI Combustion
,” SAE Paper No. 2001-01-1027.
28.
Aceves
,
S. M.
,
Flowers
,
D. L.
,
Westbrook
,
C. K.
,
Smith
,
J. R.
,
Pitz
,
W.
, and
Dibble
,
R.
, 2000, “
A Multi-Zone Model for Prediction of HCCI Combustion and Emissions
,” SAE Paper No. 2000-01-0327.
29.
Savitzky
,
A.
, and
Golay
,
M. J. E.
, 1964, “
Smoothing and Differentiation by Simplified Least-Squares Procedures
,”
Anal. Chem.
,
36
(
8
), pp.
1627
1639
.
30.
Aceves
,
S. M.
,
Flowers
,
D. L.
,
Espinosa-Loza
,
F.
,
Martinez-Frias
,
J.
,
Dibble
,
R. W.
,
Christensen
,
M.
,
Johansson
,
B.
, and
Hessel
,
R. P.
, 2002, “
Piston-Liner Crevice Geometry Effect on HCCI Combustion by Multi-Zone Analysis
,” SAE Paper No. 2002-01-2869.
31.
Flowers
,
D. L.
,
Aceves
,
S. M.
,
Martinez-Frias
,
J.
, and
Dibble
,
R. W.
, 2002, “
Prediction of Carbon Monoxide and Hydrocarbon Emissions in Iso-Octane HCCI Engine Combustion Using Multizone Simulations
,”
Proc. Combust. Inst.
,
29
(
1
), pp.
687
694
.
You do not currently have access to this content.