This paper is the first part of a study presenting the concept of indirect thermochemical upgrading of low/mid temperature solar heat, and demonstration of its integration into a high efficiency novel hybrid power generation system. The proposed system consists of an intercooled chemically recuperated gas turbine (SOLRGT) cycle, in which the solar thermal energy collected at about 220 °C is first transformed into the latent heat of vapor supplied to a reformer and then via the reforming reactions to the produced syngas chemical exergy. The produced syngas is burned to provide high temperature working fluid to a gas turbine. The solar-driven steam production helps to improve both the chemical and thermal recuperation in the system. Using well established technologies including steam reforming and low/mid temperature solar heat collection, the hybrid system exhibits promising performance: the net solar-to-electricity efficiency, based on the gross solar thermal energy incident on the collector, was predicted to be 25–30%, and up to 38% when the solar share is reduced. In comparison to a conventional CRGT system, 20% of fossil fuel saving is feasible with the solar thermal share of 22%, and the system overall efficiency reaches 51.2% to 53.6% when the solar thermal share is increased from 11 to 28.8%. The overall efficiency is about 5.6%-points higher than that of a comparable intercooled CRGT system without solar assist. Production of NOx is near zero, and the reduction of fossil fuel use results in a commensurate ∼20% reduction of CO2 emissions. Comparison of the fuel-based efficiencies of the SOLRGT and a conventional commercial Combined Cycle (CC) shows that the efficiency of SOLRGT becomes higher than that of CC when the solar thermal fraction Xsol is above ∼14%, and since the SOLRGT system thus uses up to 12% less fossil fuel than the CC (within the parameter range of this study), it commensurately reduces CO2 emissions and saves depletable fossil fuel. An economic analysis of SOLRGT shows that the generated electricity cost by the system is about 0.06 $/kWh, and the payback period about 10.7 years (including 2 years of construction). The second part of the study is a separate paper (Part II) describing an advancement of this system guided by the exergy analysis of SOLRGT.

References

1.
Lior
,
N.
, 1977, “
Solar Energy and the Steam Rankine Cycle for Driving and Assisting Heat Pumps in Heating and Cooling Modes
,”
Energy Convers.
,
16
, pp.
111
123
.
2.
Lior
,
N.
, and
Koai
,
K.
, 1984, “
Solar-Powered/Fuel-Assisted Rankine-Cycle Power and Cooling System: Simulation Method and Seasonal Performance
,”
ASME Trans. J. Sol. Energy Eng.
,
106
, pp.
142
152
.
3.
Koai
,
K.
,
Lior
,
N.
, and
Yeh
,
H.
, 1984, “
Performance Analysis of a Solar-Powered/Fuel-Assisted Rankine Cycle With a Novel 30 hp Turbine
,”
Sol. Energy
,
32
, pp.
753
764
.
4.
Lior
,
N.
, and
Koai
,
K.
, 1984, “
Solar-Powered/Fuel-Assisted Rankine Cycle Power and Cooling System: Sensitivity Analysis
,”
ASME Trans. J. Sol. Energy Eng.
,
106
, pp.
447
456
.
5.
Sherburne
,
D.
, and
Lior
,
N.
, 1986, “
Evaluation of Minimum Fuel Consumption Control Strategies in the Solar-Powered Fuel-Assisted Hybrid Rankine Cycle
,”
Proceedings of the ASES Ann. Meeting
, pp.
300
303
.
6.
Jensen
,
C.
,
Price
,
H.
, and
Kearney
,
D.
, 1989, “
The ’SEGS Power Plants: 1988 Performance
,”
1989 ASME International Solar Energy Conference
, San Diego, CA.
7.
Kolb
,
J.
, 1995, “
Evaluation of Power Production from the Solar Electric Generating Systems at Kramer Junction: 1988 to 1993
,”
Proceedings of the Solar Engineering
, -
ASME Press
,
New York
, Vol.
1
, pp.
499
504
.
8.
Cohen
,
G. H.
, and
Kearny
,
O.
, 1994, “
Improved Parabolic Trough Solar Electric Systems Based on the Segs Experience
,”
Proceedings of the American Solar Energy Society Conference
, pp.
147
150
.
9.
Buck
,
R.
,
Bräuning
,
T.
,
Denk
,
T.
,
Pfänder
,
M.
,
Schwarzbözl
,
P.
, and
Tellez
,
M.
, 2002, “
Solar-Hybrid Gas Turbine-Based Power Tower Systems (REFOS)
,”
Trans. ASME
,
124
, pp.
2
8
.
10.
Müller
,
H.
,
Freng
,
S.
, and
Trieb
,
F.
, 2004,
Concentrating Solar Power--A Review of Technology
,
Ingenia Energy
,
18
, pp.
43
50
.
11.
Dersch
,
J.
,
Geyer
,
M.
,
Herrmann
,
U.
,
Jones
,
S. A.
,
Kelly
,
B.
,
Rainer Kistner
,
R.
,
Winfried Ortmanns
,
W.
,
Pitz-Paal
,
R.
, and
Price
,
H.
, 2004, “
Trough Integration into Power Plants - A Study on the Performance and Economy of Integrated Solar Combined Cycle Systems
,”
Energy
,
29
, pp.
947
959
.
12.
DESERTEC Foundation, 2009, “
Clean Power from Deserts
,” http://www.desertec.org/http://www.desertec.org/
13.
Qu
,
H.
,
Zhao
,
J.
,
Yu
,
X.
, and
Cui
,
J.
, 2007, “
Prospect of Concentrating Solar Power in China—The Sustainable Future
,”
Renewable Sustainable Energy Rev.
,
12
(
9
), pp.
2505
2514
.
14.
Ondrey
,
G.
, 2009, “
Solar’s Second Coming
,”
Chem. Eng.
,
116
(
3
), pp.
18
21
.
15.
Li
,
J.
, 2009, “
Scaling up Concentrating Solar Thermal Technology in China
,”
Renewable Sustainable Energy Rev., Rev
,
13
(
8
), pp.
2051
2060
.
16.
Hong
,
H.
,
Jin
,
H.
,
Ji
,
J.
,
Wang
,
Z.
, and
Cai
,
R.
, 2005, “
Solar Thermal Power Cycle With Integration of Methanol Decomposition and Middle-Temperature Solar Thermal Energy
,”
Sol. Energy
,
78
, pp.
49
58
.
17.
Hong
,
H.
,
Jin
,
H.
,
Sui
,
J.
, and
Ji
,
J.
, 2008, “
Mechanism of Upgrading Low-Grade Solar Thermal Energy and Experimental Validation
,”
ASME Trans. J. Sol. Energy Eng.
,
130
,
021014
.
18.
Hong
,
H.
,
Jin
,
H.
, and
Liu
,
B.
, 2006, “
A Novel Solar-Hybrid Gas Turbine Combined Cycle With Inherent CO2 Separation Using Chemical-Looping Combustion by Solar Heat Source
,”
ASME Trans. J. Sol. Energy Eng.
,
128
, pp.
275
284
.
19.
Tamme
,
R.
,
Buck
,
R.
,
Epstein
,
M.
,
Fisher
,
U.
, and
Sugarmen
,
C.
, 2001, “
Solar Upgrading of Fuels for Generation of Electricity
,”
ASME Trans. J. Sol. Energy Eng.
,
123
, pp.
160
163
.
20.
Abdallah
,
H.
, and
Harvey
,
S.
, 2001, “
Thermodynamic Analysis of Chemically Recuperated Gas Turbines
,”
Int. J. Therm. Sci
,
40
, pp.
372
384
.
21.
Zhang
,
N.
, and
Lior
N.
, 2009, “
Use of Low/Mid-Temperature Solar Heat for Thermochemical Upgrading of Energy, With Application to a Novel Chemically-Recuperated Gas-Turbine Power Generation (SOLRGT) System
,”
Proceedings of the ASME 2009 International Mechanical Engineering Congress and Exposition
, November 13–19, Lake Buena Vista, FL, Paper No. IMECE2009-13037.
22.
Ishida
,
M.
, and
Kawamura
,
K.
, 1982, “
Energy and exergy Analysis of a Chemical Process System With Distributed Parameters Based on the Energy Direction Factor Diagram
,”
Ind. Eng. Chem. Process Des. Dev.
,
21
, pp.
690
695
.
23.
Ishida
,
M.
, 2002,
Thermodynamics Made Comprehensible
,
Nova Science
,
New York
.
24.
Kesser
,
K. F.
,
Hoffman
,
M. A.
, and
Baughn
,
J. W.
, 1994, “
Analysis of a Basic Chemically Recuperated Gas Turbine Power Plant
,”
ASME J. Eng. Gas Turbines Power
,
116
, pp.
277
284
.
25.
Abdallah
,
H.
,
Facchini
,
B.
,
Danes
,
F.
,
de Ruyck
,
J.
, 1999, “
Exergetic Optimization of Intercooled Reheat Chemically Recuperated Gas Turbine
,”
Energy Convers. Manage.
,
40
, pp.
1679
1686
.
26.
Nakagaki
,
T.
,
Ogawa
,
T.
,
Hirata
,
H.
,
Kawamoto
,
K.
,
Ohashi
,
Y.
, and
Tanaka
,
K.
, 2003, “
Development of Chemically Recuperated Micro Gas Turbine
,”
ASME Trans. J. Eng. Gas Turbines Power
,
125
, pp.
391
397
.
27.
Han
,
W.
,
Jin
,
H.
,
Zhang
,
N.
, and
Zhang
,
X.
, 2007, “
Cascade Utilization of Chemical Energy of Natural Gas in an Improved CRGT Cycle
,”
Energy
,
32
, pp.
306
313
.
28.
Stecco
,
S.
Facchini
,
B.
, 1989, “
A computer Model for Cooled Expansion in Gas Turbines
,”
Proceedings of the ASME Cogen-Turbo Symposium
,
Nice
,
France
.
29.
Elmasri
,
M. A.
, 1986, “
On Thermodynamics of Gas Turbine Cycles: Part 2 - A Model for Expansion in Cooled Turbines
,”
ASME J. Eng. Gas Turbines Power
,
108
, pp.
151
159
.
30.
Aspen Plus®, Aspen Technology, Inc., 2009, Version 11.1, http://www.aspentech.com/.
31.
Adelman
,
S. T.
,
Hoffman
,
M. A.
, and
Baughn
,
J. W.
, 1995, “
A Methane-Steam Reformer for a Basic Chemically Recuperated Gas Turbine
,”
ASME J. Eng. Gas Turbines Power
,
117
, pp.
16
23
.
32.
Price
,
H.
,
Lüpfert
,
E.
,
Kearney
,
D.
,
Zarza
,
E.
,
Cohen
,
G.
,
Gee
,
R.
, and
Mahoney
,
R.
, 2002, “
Advances in Parabolic Trough Solar Power Technology
,”
ASME J. Sol. Energy Eng.
,
124
, pp.
109
125
.
33.
Zhang
,
N.
,
Lior
,
N.
, 2012, “
Use of Low/Mid-Temperature Solar Heat for Thermochemical Upgrading of Energy, Part II: A Novel Zero-Emissions Design (ZE-SOLRGT) of the Solar Chemically-Recuperated Gas-Turbine Power Generation System (SOLRGT) guided by its Exergy Analysis
,”
ASME J. Eng. Gas Turbines Power
, Accepted.
34.
U.S. Energy Information Administration, 2010, “
Natural Gas Weekly Update
,” http://www.eia.doe.gov/oog/info/ngw/ngupdate.asp 2010.9.30.
35.
Geyer
,
M.
,
Lupfert
,
E.
,
Osuna
,
R.
,
Esteban
,
A.
,
Schiel
,
W.
,
Schweitzer
,
A.
,
Zarza
,
E.
,
Nava
,
P.
,
Langenkamp
,
J.
, and
Mandelberg
E.
, 2002, “
EURO TROUGH - Parabolic Trough Collector Family Developed and Qualified for Cost Efficient Solar Power Generation
,”
Proceedings of 11st International Symposium on Concentrating Solar Power and Chemical Technologies
, Zurich, Switzerland, Paper No. 2009102502.
36.
Herrmann
,
U.
,
Kelly
,
B.
, and
Price
,
H.
, 2004, “
Two-Tank Molten Salt Storage for Parabolic Trough Solar Power Plants
,”
Energy
,
29
, pp.
883
893
.
37.
Montes
,
M. J.
,
Abánades
,
A.
,
Martínez-Val
,
J. M.
,
Valdes
,
M.
, 2009, “
Solar Multiple Optimization for A Solar-Only Thermal Power Plant, Using Oil as Heat Transfer Fluid in the Parabolic Trough Collectors
,”
Sol. Energy
,
83
, pp.
2165
2176
.
38.
Pitz-Paal
,
R.
,
Dersch
,
J.
, and
Milow
,
B.
, 2005,
European Concentrated Solar Thermal Road-Mapping
,
The German Aerospace Center (DLR) Stuttgart
.
39.
Price
,
H.
, 2003, “
Assessment of Parabolic Trough and Power Tower Solar Technology Cost and Performance Forecasts
,” National Renewable Energy Laboratory, Golden, CO.
40.
Zhang
,
N.
,
Lior
,
N.
,
Liu
,
M.
, and
Han
W.
, 2010, “
COOLCEP (Cool Clean Efficient Power): A Novel CO2-Capturing Oxy-Fuel Power System With LNG (Liquefied Natural Gas) Coldness Energy Utilization
,”
Energy
,
35
, pp.
1200
1210
.
41.
Liu
,
M.
,
Lior
,
N.
,
Zhang
,
N.
, and
Han
,
W.
, 2009, “
Thermoeconomic Analysis of a Novel Zero-CO2-Emission High-Efficiency Power Cycle Using LNG Coldness
,”
Energy Convers. Manage.
,
50
, pp.
2768
2781
.
42.
Kreutz
,
T.
,
Williams
,
R.
,
Consonni
,
S.
, and
Chiesa
,
P.
, 2005, “
Co-Production of Hydrogen, Electricity and CO2 from Coal With Commercially Ready Technology Part B: Economic Analysis
,”
Hydrogen Energy
,
30
, pp.
769
784
.
43.
Odeh
,
S. D.
,
Morrison
,
G. L.
, and
Behnia
,
M.
, 1998, “
Modeling of Parabolic Trough Direct Steam Generation Solar Collectors
,”
Sol. Energy
,
62
, pp.
395
406
.
44.
TRNSYS, A TRaNsient Systems Simulation Program, version 16, http://sel.me.wisc.edu/trnsys/ 2010.9.30.
45.
García-Rodríguez
,
L.
, and
Gómez-Camacho
,
C.
, 2005, “
Thermo-Economic Analysis of a Solar Multi-Effect Distillation Plant Installed at the Plataforma Solar de Almeria (Spain)
,”
Desalination
,
122
, pp.
205
214
.
46.
Caldés
,
N.
,
Varela
,
M.
,
Santamaría
,
M.
, and
Saez
,
R.
, 2009, “
Economic Impact of Solar Thermal Electricity Deployment in Spain
,”
Energy Policy
,
37
, pp.
1628
1636
.
47.
Larson
,
E. D.
, and
Ren
,
T.
, 2003, “
Synthetic Fuel Production by Indirect Coal Liquefaction
,”
Energy Sustainable Dev.
,
7
, pp.
79
102
.
48.
Solutia, Inc., Therminol VP-1, http://www.therminol.com 2010.9.30.
49.
Gas Turbine World
, 2009,
2009 Handbook
,
Pequot Publishing, Inc.
,
Fairfield, CT
.
50.
The Energy of California, 2010, “
Operation and Maintenance Costs
,” http://www.energy.ca.gov/distgen/economics/operation.html 2010.9.30.
51.
International Energy Agency, 2011, IEA Statistics - Electricity Information - 2011, Paris, France.
52.
U.S. Energy Information Administration, 2010, “
Average Retail Price of Electricity to Ultimate Customers by End-Use Sector, by State
,” http://www.eia.doe.gov/electricity/epm/table5_6_a.html 2010.9.30 7.4.
53.
U. S. Energy Information Administration, 2010, “
Average Retail Price of Electricity to Ultimate Customers by End-Use Sector
,” http://www.eia.gov/electricity/annual/pdf/table7.4.pdf.
You do not currently have access to this content.