Large eddy simulations of swirling flow and the associated convective heat transfer in a gas turbine can combustor under cold flow conditions for Reynolds numbers of 50,000 and 80,000 with a characteristic Swirl number of 0.7 are carried out. A precursor Reynolds averaged Navier-Stokes (RANS) simulation is used to provide the inlet boundary conditions to the large-eddy simulation (LES) computational domain, which includes only the can combustor. A stochastic procedure based on the classical view of turbulence as a superposition of the coherent structures is used to simulate the turbulence at the inlet plane of the computational domain using the mean flow velocity and Reynolds stress data from the precursor RANS simulation. To further reduce the overall computational resource requirement and the total computational time, the near wall region is modeled using a zonal two layer model (WMLES). A novel formulation in the generalized co-ordinate system is used for the solution of effective tangential velocity and temperature in the inner layer virtual mesh. The WMLES predictions are compared with the experimental data of Patil et al. (2011, “Experimental and Numerical Investigation of Convective Heat Transfer in Gas Turbine Can Combustor,” ASME J. Turbomach., 133(1), p. 011028) for the local heat transfer distribution on the combustor liner wall obtained using robust infrared thermography technique. The heat transfer coefficient distribution on the liner wall predicted from the WMLES is in good agreement with experimental values. The location and the magnitude of the peak heat transfer are predicted in very close agreement with the experiments.

References

1.
Starkey
,
P. A.
and
Yim
,
M. J.
, 2007, “
Experimental and Numerical Investigation of a Swirl Stabilized Premixed Combustor Under Cold-Flow Conditions
,”
ASME J. Fluids Eng.
,
129
, pp.
942
953
.
2.
Nejad
,
A. S.
,
Vanka
,
S. P.
, and
Favaloro
,
S. C.
, 1989, “
Application of Laser Velocimetry for Characterization of Confined Swirling Flow
,”
ASME J. Eng. Gas Turbines Power
,
111
(
1
), pp.
36
45
.
3.
Weber
,
R.
,
Visser
,
B.
, and
Boysan
,
F.
, 1990, “
Assessment of Turbulence Modeling for Engineering Prediction of Swirling Vortices in the Near Burner Zone
,”
Int. J. Heat Fluid Flow
,
11
(
3
), pp.
225
235
.
4.
Kitoh
,
O.
, 1991, “
Experimental Study of Turbulent Swirling Flow in a Straight Pipe
,”
J. Fluid Mech.
,
225
, pp.
445
479
.
5.
Ahmed
,
S. A.
, 1998, “
Velocity Measurements and Turbulence Statistics of a Confined Isothermal Swirling Flow
,”
Exp. Therm. Fluid Sci.
,
17
, pp.
256
264
.
6.
Wang
,
P.
,
Bai
,
X.
,
Wessman
,
M.
, and
Klingmann
,
J.
, 2004, “
Large Eddy Simulation and Experimental Studies of a Confined Turbulent Swirling Flow
,”
Phys. Fluids
,
16
(
9
), pp.
3306
3324
.
7.
Patil
,
S.
,
Abraham
,
S.
,
Tafti
,
D.
,
Ekkad
,
S.
,
Kim
,
Y.
,
Dutta
,
P.
,
Moon
,
H.
, and
Srinivasan
,
R.
, 2011, “
Experimental and Numerical Investigation of Convective Heat Transfer in Gas Turbine Can Combustor
,”
ASME J. Turbomach.
,
133
(
1
), p.
011028
.
8.
Patil
,
S.
,
Sedalor
,
T.
,
Tafti
,
D.
,
Ekkad
,
S.
,
Kim
,
Y.
,
Dutta
,
P.
,
Moon
,
H.
, and
Srinivasan
,
R.
, 2011, “
Study of Flow and Convective Heat Transfer in a Simulated Scaled Up Low Emission Annular Combustor
,”
J. Therm. Sci. Eng. Appl.
,
3
(
3
), pp.
031010
031017
.
9.
Grinstein
,
F.
and
Fureby
,
C.
, 2005, “
LES Studies of the Flow in a Swirl Gas Turbine Combustor
,”
Proc. Combust. Inst.
,
30
, pp.
1791
1798
.
10.
Wang
,
S.
,
Yang
,
V.
,
Hsiao
,
G.
,
Hsieh
,
S.
, and
Mongia
,
H.
, 2007, “
Large-Eddy Simulation of Gas-Turbine Swirl Injector Flow Dynamics
,”
J. Fluid Mech.
,
583
, pp.
99
122
.
11.
Pierce
,
C. D.
and
Moin
,
P.
, 1998, “
Large Eddy Simulation of a Confined Coaxial Jet With Swirl and Heat Release
,”
29th AIAA Fluid Dynamics Conference
, 15–18 June, 1998, AIAA Paper No. 98-2892.
12.
Kim
,
W. W.
,
Menon
,
S.
, and
Mongia
,
H. C.
, 1999, “
Large-Eddy Simulation of a Gas Turbine Combustor Flow
,”
Combust. Sci. Technol.
,
143
, pp.
25
62
.
13.
Chapman
,
D. R.
, 1979, “
Computational Aerodynamics, Development and Outlook
,”
AIAA J.
,
17
, pp.
1293
313
.
14.
Germano
,
M.
,
Piomelli
,
U.
,
Moin
,
P.
, and
Cabot
,
W. H.
, 1991, “
A Dynamic Subgrid-Scale Eddy Viscosity Model
,”
Phys. Fluids A
,
3
, pp.
1760
1765
.
15.
Lilly
D. K.
, 1992, “
A Proposed Modification of the Germano Subgrid Scale Closure Method
,”
Phys. Fluids A
,
4
, pp.
633
635
.
16.
Najjar
,
F.
and
Tafti
,
D. K.
, “
Study of Discrete Test Filters and Finite Difference Approximations for the Dynamic Subgrid-Scale Stress Model
,”
Phys. Fluids
,
8
(
4
), pp.
1076
1088
.
17.
Patil
,
S. S.
and
Tafti
,
D. K.
, 2012, “
Wall Modeled Large-Eddy Simulation of High Reynolds Number Complex Flows With Synthetic Inlet Turbulence
,”
Int. J. Heat Fluid Flow
33
(1)
, pp.
9
21
.
18.
Kays
,
W. M.
, 1992, “
Turbulent Prandtl Number – Where We Are?
,”
Max Jacobs Memorial Award Lecture
, pp. 1–12.
19.
Jarrin
,
N.
,
Benhamadouche
,
S.
,
Laurence
,
D.
, and
Prosser
,
R.
, 2007, “
A Synthetic-Eddy Method for Generating Inflow Conditions for Large-Eddy Simulations
,”
Int. J. Heat Fluid Flow
27
, pp.
585
593
.
20.
Patil
,
S. S.
and
Tafti
,
D. K.
, 2011, “
Wall Modeled Large-Eddy Simulation of Flow Over a Backward Facing Step With Synthetic Inlet Turbulence
,”
AIAA Aerospace Science Meeting
, Orlando, FL, USA, AIAA Paper No. 896435.
21.
Tafti
,
D. K.
, 2001, “
GenIDLEST—A Scalable Parallel Computational Tool for Simulating Complex Turbulent Flows
,”
Proceedings of the ASME Fluids Engineering Division
, FED, ASME-IMECE, November 2001, New York, Vol.
256
.
22.
Tafti
,
D. K.
, 2010, “
Time-Accurate Techniques for Turbulent Heat Transfer Analysis in Complex Geometries
,”
Advances in Computational Fluid Dynamics and Heat Transfer, (Developments in Heat Transfer Series)
,
R.
Amano
and
B.
Sunden
, eds.,
WIT
,
Southampton, UK
.
You do not currently have access to this content.