This paper describes the aero-thermodynamic design, microfabrication and combustion test results for a single-crystal-silicon premixed-fuel microscale can combustor. The combustion chamber volume is 277 mm3, and the microscale can combustor was fabricated by silicon bulk micromachining technology. Hydrogen fuel-air premixing was performed in the combustion test. The operation space in which stable combustion occurred was experimentally determined from the combustion temperature and efficiency for various mass flow rates and equivalence ratios. The expression for the combustion efficiency under conditions where the overall rate of heat release is limited by the chemical kinetics was consistent with the burning velocity model. The flame stabilization, the range of equivalence ratios and the maximum air velocity that the combustor can tolerate before flame extinction occurs were in agreement with the well - stirred reactor (WSR) and combustion loading parameter (CLP) models. A proposed aero-thermodynamic design approach based on these three models provides a physical interpretation of the experimental results in the operation space of stable combustion. Furthermore, this approach provides a unified physical interpretation of the stable combustion operation spaces of microscale combustors with various dimensions and configurations. Therefore, it is demonstrated that the proposed aero-thermodynamic approach has an important role in predicting the preliminary aerodynamic design performances of new microscale combustors.

References

References
1.
Epstein
,
A. H.
, 2004, “
Millimeter-Scale, Micro-Electro-Mechanical Systems Gas turbine Engines
,”
J. Eng. Gas Turbines Power
,
125
, pp.
205
226
.
2.
Mehra
,
A.
,
Zhang
,
X.
,
Ayon
,
A. A.
,
Waitz
,
I. A.
,
Schmidt
,
M. A.
, and
Spadaccini
,
C.M.
, 2000, “
A Six-Wafer Combustion Systems for a Silicon Micro Gas Turbine Engine
,”
J. Microelectromech. Syst.
,
9
, pp.
517
527
.
3.
Waitz
,
I. A.
,
Gauba
,
G.
, and
Tzeng
,
Y. S.
, 1998, “
Combustors for Micro - Gas Turbine Engines
,”
J. Fluid Eng.
,
120
, pp.
109
117
.
4.
Spadaccini
,
C. M.
,
Mehra
,
A.
,
Lee
,
J.
,
Zhang
,
X.
,
Lukachko
,
S.
, and
Waitz
,
I. A.
, 2003, “
High Power Density Silicon Combustion Systems for Micro Gas Turbine Engines
,”
J. Eng. Gas Turbines Power
,
125
, pp.
709
719
.
5.
Spadaccini
,
C. M.
,
Zhang
,
X.
,
Cadou
,
C. P.
,
Miki
,
N.
, and
Waitz
,
I. A.
, 2003, “
Preliminary Development of a Hydrocarbon-Fueled Catalytic Micro-Combustor
,”
Sensors Actuators, A
,
103
, pp.
219
224
.
6.
Spadaccini
,
C. M.
,
Peck
,
J.
, and
Waitz
,
I. A.
, 2007, “
Catalytic Combustion Systems formicroscale Gas Turbine Engines
,”
J. Eng. Gas Turbines Power
,
129
, pp.
49
60
.
7.
Lefebvre
,
A. H.
, and
Ballal
,
D. R.
, 2010,
Gas Turbine Combustion: Alternative Fuels and Emissions
,
3rd ed.
,
Taylor & Francis
,
New York
, pp.
136
167
.
8.
Shan
,
X. C.
,
Wang
,
Z. F.
,
Jin
,
Y. F.
,
Wu
,
M.
,
Hua
,
J.
,
Wong
,
C. K.
, and
Maeda
,
R.
, 2005, “
Studies on a Micro Combustor for Gas Turbine Engines
,”
J. Micromech. Microeng.
,
15
, pp.
S215
S221
.
9.
Hua
,
J.
,
Wu
,
M.
, and
Kumar
,
K.
, 2005, “
Numerical Simulation of the Combustion of Hydrogen-Air Mixture in Microscaled Chambers Part II: CFD Analysis for a Micro-Combustor
,”
Chem. Eng. Sci.
,
60
, pp.
3507
3515
.
10.
Henderson
,
R. E.
, and
Blazowski
,
W. S.
, 1989, “
Turbopropulsion Combustion Technology
,”
Aircraft Propulsion Systems Technology and Design
,
G.C.
Oates
, ed.,
American Institute of Aeronautics and Astronautics, Inc.
,
Reston, VA
, pp.
105
165
.
11.
Mattingly
,
J. D.
,
Heiser
,
W. H.
, and
Pratt
,
D. T.
, 2002,
Aircraft Engine Design
,
2nd ed.
,
American Institute of Aeronautics and Astronautics, Inc.
,
Reston, VA
, Chap. 9.
12.
Mattingly
,
J. D.
, 2006,
Elements of Propulsion: Gas Turbines and Rockets
American Institute of Aeronautics and Astronautics, Inc.
,
Reston, VA
, p. 376; pp.
744
776
.
13.
Lefebvre
,
A. H.
, 1966, “
Theoretical Aspects of Gas Turbine Combustion Performance
,” CoA Note Aero, No. 163, Cranfield University, UK, pp. 1–17.
14.
Greenhough
,
V. W.
, and
Lefebvre
,
A. H.
, 1957, “
Some Application of Combustion Theory to Gas Turbine Development
,”
Sixth International Symposium on Combustion
,
Reinhold
,
New York
, pp.
858
869
.
15.
Wright
,
F. H.
, 1959, “
Bluff Body Flame stabilization: Blockage Effects
,”
Combust. Flame
,
3
, pp.
319
337
.
16.
Zukoski
,
E. E.
, 1985, “
Afterburners
,”
Aerothermodynamics of Aircraft Engine Components
,
G. C.
Oates
, ed.,
American Institute of Aeronautics and Astronautics, Inc.
,
Reston, VA
, pp.
62
105
.
17.
Greitzer
,
E. M.
,
Tan
,
C. S.
, and
Graf
,
M. B.
, 2006,
Internal Flow
,
Cambridge University Press
,
Cambridge, UK
, Chap. 1.
18.
Blazowski
,
W. S.
, 1985, “
Fundamentals of Combustion
,”
Aerothermodynamics of Aircraft Engine Components
,,
G. C.
Oates
, ed.,
American Institute of Aeronautics and Astronautics, Inc.
,
Reston, VA
, pp.
3
43
.
19.
Jachimowski
,
C. J.
, 1988, “
An Analytical Study of the Hydrogen-Air Reaction Mechanism with Application to Scramjet Combustion
,” NASA TP-2791.
20.
Coffee
,
T. P.
,
Kotlar
,
A. J.
, and
Miller
,
M. S.
, 1983, “
The Overall Reaction Concept in Premixed, Laminar, Steady-State Flames. I. Stoichiometries
,”
Combust. Flame
,
54
, pp.
155
169
.
21.
Coffee
,
T. P.
,
Kotlar
,
A. J.
, and
Miller
,
M. S.
, 1984, “
The Overall Reaction Concept in Premixed, Laminar, Steady-State Flames. II. Initial Temperatures and Pressures
,”
Combust. Flame
,
58
, pp.
59
67
.
22.
Kerrebrock
,
J. L.
, 1992,
Aircraft Engine and Gas Turbines
,
2nd ed.
,
The MIT Press
,
Cambridge, MA
, Chap. 4.
23.
Suzuki
,
Y.
,
Okada
,
Y.
,
Ogawa
,
J.
, and
Toriyama
,
T.
, 2008, “
Experimental Study on Mechanical Power Generation from MEMS Internal Combustion Engine
,
Sensors Actuators, A
,
141
, pp.
654
661
.
24.
Lewis
and
von Elbe
,
G.
, 1987,
Combustion, Flames and Explosions of Gases
,
3rd ed.
,
Academic Press Inc.
,
New York
, Chap. 2.
25.
Beer
,
J. M.
and
Chigier
,
N. A.
, 1972,
Combustion Aerodynamics
,
Applied Science Publishers, Ltd.
,
London
, pp.
63
72
.
26.
Shanbhogue
,
S. J.
,
Husain
,
S.
, and
Lieuwen
,
T.
, 2009, “
Lean Blowoff of Bluff Body Stabilized Flames: Scaling and Dynamics
,”
Prog. Energy Combust. Sci.
,
35
, pp.
98
120
.
27.
Radhakrishnan
,
K.
, and
Pratt
,
D. T.
, 1988, “
Fast Algorithm for Calculating Chemical Kinetics in Turbulent Reacting Flow
,”
Combust. Technol. Sci.
,
58
, pp.
155
176
.
28.
Moon
,
H. S.
,
Choi
,
D.
, and
Spearing
,
S. M.
, 2004, “
Development of Si-SiC Hybrid Structures for Elevated Temperature Micro-Turbomachinery
,”
J. Microelectromech. Syst.
,
13
, pp.
676
687
.
29.
Leyes
,
R. A.
, and
Fleming
,
W. A.
, 1999,
The History of North American Small Gas Turbine Aircraft Engines
,
American Institute of Aeronautics and Astronautics, Inc.
,
Reston, VA
, pp.
11
26
.
You do not currently have access to this content.