Experiments were carried out to determine whether nickel or Inconel are catalytically active for hydrogen oxidation. The work was motivated by the problem of flame flashback and/or inlet preignition in hydrogen-rich syngas fueled premixed/prevaporized gas turbine combustors. The experiments were performed using small resistively heated tubular reactors with matrix isolation/infrared diagnostics. Reactors were manufactured from stainless steel, nickel and Inconel. For the flow conditions studied, the conversion efficiency was about 3% for the nickel reactor and 0.9% for the Inconel reactor. No activity was seen for stainless steel. Comparison with a published surface kinetic reaction mechanism for nickel suggests that the surface oxidation rate of H2 in our reactors is about two orders of magnitude less than for specially prepared surfaces.

References

References
1.
Chaos
,
M.
, and
Dryer
,
F.
, 2008, “
Syngas Combustion Kinetics and Applications
,”
Combust. Sci. Technol.
,
180
, pp.
1051
1094
.
2.
Petersen
,
E.
,
Kalitan
,
D.
,
Barrett
,
A.
,
Reehal
,
S.
,
Mertens
,
J.
,
Beerer
,
D.
,
Hack
,
R.
, and
McDonell
,
V.
, 2007, “
New Syngas/Air Ignition Data at Lower Temperature and Elevated Pressure and Comparison To Current Kinetics Models
,”
Combust. Flame
,
149
, pp.
244
247
.
3.
Varatharajan
,
B.
,
McManus
,
K.
,
Lacy
,
B.
, and
Lipinski
,
J.
, 2005, “
Hydrogen Combustion for Gas Turbine Combustor Applications—Kinetics and Analysis
,”
Proceedings of the 4th Joint Meeting of the US Sections of the Combustion Institute
,
Drexel University
,
Philadelphia, PA
.
4.
Peschke
,
W.
, and
Spadaccini
,
L.
, 1985, “
Determination of Autoignition and Flame Speed Characteristics of Coal Gases having Medium Heating Values
,” United Technologies Research Center, Final Report No. EPRI AP-4291.
5.
Beerer
,
D.
, and
McDonell
,
V.
, 2008, “
Autoignition of Hydrogen and Air Inside a Continuous Flow Reactor With Application to Lean Premixed Combustion
,”
J. Eng. Gas Turbines Power
,
130
, p.
051507
.
6.
Santoro
,
R.
, 2009, “
Autoignition Studies of Syngas and Hydrogen (SGH) Fuels
,” The Pennsylvania State University, Final Report DOE Award No. DE-FC26-02NT41431, UTSR Project No. 05-01-SR117.
7.
Chaos
,
M.
, and
Dryer
,
F.
, 2010, “
Chemical-Kinetic Modeling of Ignition Delay: Considerations in Interpreting Shock Tube Data
,”
Int. J. Chem. Kinet.
,
42
, pp.
143
150
.
8.
Dryer
,
F.
, and
Chaos
,
M.
, 2008, “
Ignition of Syngas/Air and Hydrogen/Air Mixtures at Low Temperatures and High Pressures: Experimental Data Interpretation and Kinetic Modeling Implications
,”
Combust. Flame
,
152
, pp.
293
299
.
9.
Martynenko
,
V.
,
Penyaz’kov
,
O.
,
Ragotner
,
K.
, and
Shabunya
,
S.
, 2004, “
High-Temperature Ignition of Hydrogen and Air at High Pressures Downstream of the Reflected Shock Wave
,”
J. Eng. Phys Thermophys.
,
77
(
4
), pp.
785
793
.
10.
Mertens
,
J.
,
Mussmann
,
S.
,
Kalitan
,
D.
, and
Petersen
,
E.
, 2008, “
A Chemical Kinetics Model for the Fast Ignition of Syngas at Lower Temperatures and Higher Pressures
,”
Proceedings of the Western States Section of the Combustion Institute Spring Meeting
, Los Angeles, CA, Paper No. 08S-03.
11.
Pang
,
G.
,
Davidson
,
D.
, and
Hanson
,
R.
, 2009, “
Experimental Study and Modeling of Shock Tube Igntion Delay Times for Hydrogen-Oxygen-Argon Mixtures at Low Temperatures
,”
Proc. Combust. Inst.
,
32
, pp.
181
188
.
12.
Jasch
,
K.
, and
Daily
,
J.
, 2008, “
Ignition Delay in High Pressure and Low Temperature Hydrogen-Rich Syngas Combustion: Discrepancies Between Experiment and Prediction
,”
Proceedings of the Western States Section of the Combustion Insititute Spring Meeting
, Paper No. 08S-2.
13.
Norton
,
P.
, 1982,
The Chemical Physics of Solid Surfaces and Heterogeneous Catalysis
, Vol.
4
,
Elsevier Scientific Publishing Company
,
Amsterdam
, p.
27
.
14.
von
Elbe
,
G.
, and
Lewis
,
B.
, 1942, “
Mechanisms of the Thermal Reaction Between Hydrogen and Oxygen
,”
J. Chem. Phys.
,
10
, pp.
366
393
.
15.
Deutschmann
,
O.
,
Behrendt
,
F.
, and
Warnatz
,
J.
, 1994, “
Modelling and Simulation of Heterogeneous Oxidation of Methane on a Platinum Foil
,”
Catal. Today
,
21
, pp.
461
470
.
16.
Deutschmann
,
O.
,
Schmidt
,
R.
,
Behrendt
,
F.
, and
Warnatz
,
J.
, 1996, “
Numerical Modeling of Catalytic Ignition
,”
Proc. Combust. Inst.
,
26
, pp.
1747
1754
.
17.
Raja
,
L.
,
Kee
,
R.
,
Deutschmann
,
O.
,
Warnatz
,
J.
, and
Schmidt
,
L.
, 2000, “
A Critical Evaluation of Navier-Stokes, Boundary Layer, and Plug-Flow Models of the Flow and Chemistry in a Catalytic-Combustion Monolith
,”
Catal. Today
,
59
, pp.
47
60
.
18.
Dadayan
,
K.
,
Boreskov
,
G.
, and
Savchenko
,
V.
, 1978, “
Adsorption of Oxygen on the (110) Surface of a Nickel Single Crystal
,”
Kinetics and Catalysis
,
19
(
3
), pp.
553
559
.
19.
Dadayan
,
K.
,
Boreskov
,
G.
,
Savchenko
,
V.
,
Sadovskaya
,
E.
, and
Yablonskii
,
G.
, 1979, “
Oxidation of Hydrogen on Nickel (110)
,”
Kinetics and Catalysis
,
20
(
3
), pp.
654
656
.
20.
Savchenko
,
V.
,
Boreskov
,
G.
, and
Dadayan
,
K.
, 1979, “
Interaction of Hydrogen With Oxygen Chemisorbed on (110) Face of Single Crystal of Nickel
,”
Kinetics and Catalysis
,
20
(
3
), pp.
610
617
.
21.
Zhu
,
H.
,
Kee
,
R.
,
Janardhanan
,
V.
,
Deutschmann
,
O.
, and
Goodwin
,
D.
, 2005, “
Modeling Elementary Heterogeneous Chemistry and Electrochemistry in Solid-Oxide Fuel Cells
,”
J. Electrochem. Soc.
,
152
(
12
), pp.
A2427
A2440
.
22.
Kohn
,
D.
,
Clauberg
,
H.
, and
Chen
,
P.
, 1992, “
Flash Pyrolysis Nozzle for Generation of Radicals in a Supersonic Jet Expansion
,”
Rev. Sci. Instrum.
,
63
(
8
), pp.
4003
4005
.
23.
Vasiliou
,
A.
,
Nimlos
,
M.
,
Daily
,
J.
, and
Ellison
,
G.
, 2009, “
Thermal Decomposition of Furan Generates Propargyl Radicals
,”
J. Phys. Chem. A
,
113
, pp.
8540
8547
.
24.
Zhang
,
X.
,
Friderichsen
,
A.
,
Nandi
,
S.
,
Ellison
,
G.
,
David
,
D.
,
McKinnon
,
J.
,
Lindeman
,
T.
,
Dayton
,
D.
, and
Nimlos
,
M.
, 2003, “
Intense, Hyperthemal Source of Organic Radicals for Matrix-Isolation Spectroscopy
,”
Rev. Sci. Instrum.
,
74
(
6
), pp.
3077
3086
.
25.
Guan
,
Q.
,
Ellison
,
G.
, and
Daily
,
J.
, 2010, “
Compressible Reacting CFD Simulation of Flow in a Hyperthermal Tubular Reactor
,”
Proceedings of theWestern States Section of the Combustion Insititute Spring Meeting
, Boulder, CO, Paper No. 10S-43.
26.
Cooper
,
P.
,
Kjaergaard
,
H.
,
Langford
,
V.
,
McKinley
,
A.
,
Quickenden
,
T.
,
Robinson
,
T.
, and
Schofield
,
D.
, 2005, “
Infrared Indentification of Matrix Isolated H2OO2
,”
J. Phys. Chem. A
,
109
(
19
), pp.
4274
4279
.
27.
Engdahl
,
A.
, and
Nelander
,
B.
, 1989, “
Water in Krypton Matrices
,”
J. Mol. Struct.
,
193
, pp.
101
109
.
28.
Michaut
,
X.
,
Vasserot
,
A.-M.
, and
Abouaf-Marguin
,
L.
, 2004, “
Temperature and Time Effects on the Rovibrational Structure of Fundamentals of H2O Trapped in Solid Argon: Hindered Rotation and RTC Satellite
,”
Vib. Spectrosc.
,
34
, pp.
83
93
.
29.
Frisch
,
M. J.
,
Trucks
,
G. W.
,
Schlegel
,
H. B.
,
et al.
, 2004, Gaussian 03, Revision C.01, Gaussian, Inc., Wallingford, CT.
30.
Kee
,
R.
,
Rupley
,
F.
,
Miller
,
J.
,
Coltrin
,
M.
,
Grcar
,
J.
,
Meeks
,
E.
,
Moffat
,
H.
,
Lutz
,
A.
,
Dixon-Lewis
,
G.
,
Smooke
,
D.
,
Warnatz
,
J.
,
Evans
,
G.
,
Larson
,
R.
,
Mitchell
,
R.
,
Petzold
,
L.
,
Reynolds
,
W.
,
Caracotsios
,
M.
,
Stewart
,
W.
,
Glarborg
,
P.
,
Wang
,
C.
,
McLellan
,
C.
,
Adigun
,
O.
,
Houf
,
W.
,
Chou
,
C.
,
Miller
,
S.
,
Ho
,
P.
,
Young
,
P.
,
Young
,
D.
,
Hodgson
,
D.
,
Petrova
,
M.
, and
Puduppakkam
,
K.
, 2006, CHEMKIN Release 4.1., Reaction Design, San Diego, CA.
31.
Bustamante
,
F.
,
Enick
,
R.
,
Cugini
,
A.
,
Killmeyer
,
R.
,
Howard
,
B.
,
Rothenberger
,
K.
,
Ciocco
,
M.
,
Morreale
,
B.
,
Chattopadhyay
,
S.
, and
Shi
,
S.
, 2004, “
High-Temperature Kinetics of the Homogeneous Reverse Water-Gas Shift Reaction
,”
AIChE J.
,
50
, p.
1028
.
You do not currently have access to this content.