High-cycle fatigue (HCF) is arguably one of the costliest sources of in-service damage in military aircraft engines. HCF of turbine blades and disks can pose a significant engine risk because fatigue failure can result from resonant vibratory stresses sustained over a relatively short time. A common approach to mitigate HCF risk is to avoid dangerous resonant vibration modes (first bending and torsion modes, etc.) and instabilities (flutter and rotating stall) in the operating range. However, it might be impossible to avoid all the resonance for all flight conditions. In this paper, a methodology is presented to assess the influences of HCF loading on the fracture risk of gas turbine engine components subjected to fretting fatigue. The methodology is based on an integration of a global finite element analysis of the disk-blade assembly, numerical solution of the singular integral equations using the CAPRI (Contact Analysis for Profiles of Random Indenters) and Worst Case Fret methods, and risk assessment using the DARWIN (Design Assessment of Reliability with Inspection) probabilistic fracture mechanics code. The methodology is illustrated for an actual military engine disk under real life loading conditions.

References

References
1.
Chandra
,
R.
,
Golden
,
P. J.
,
Enright
,
M. P.
, and
Chan
,
K. S.
, 2008, “
Fretting Fatigue-Based Risk Assessment of Gas Turbine Engine Disks
,” Proceedings of the 49th AIAA Structures, Structural Dynamics, and Materials Conference, April 7–10, 2008, Schaumburg, IL, Paper No. AIAA-2008-2227.
2.
Enright
,
M. P.
,
Chan
,
K. S.
,
Moody
,
J. P.
,
Golden
,
P. J.
,
Chandra
,
R.
, and
Pentz
,
A. C.
, 2009, “
Probabilistic Fretting Fatigue Assessment of Aircraft Engine Disks
,” Proceedings of ASME Turbo Expo 2009, Power for Land, Sea, and Air, June 8–12, 2009, Orlando, FL, Paper No. GT2009-60224.
3.
Chan
,
K. S.
,
Enright
,
M. P.
,
Moody
,
J. P.
,
Golden
,
P. J.
,
Chandra
,
R.
, and
Pentz
,
A. C.
, 2010, “
Residual Stress Profiles for Mitigating Fretting Fatigue in Gas Turbine Engine Disks
,”
Int. J. Fatigue
,
32
, pp.
815
823
.
4.
Enright
,
M. P.
,
Chan
,
K. S.
,
Moody
,
J. P.
,
Golden
,
P.
,
Chandra
,
R.
, and
Pentz
,
A.
, 2009, “
Influence of Random Residual Stress on Fretting Fatigue Risk of Engine Disks
,” Proceedings of the 50th AIAA Structures, Structural Dynamics, and Materials Conference, Palm Springs, California, May 4–9, 2009, Paper No. AIAA-2009-2302.
5.
Golden
,
P. J.
, and
Calcaterra
,
J.
, 2006, “
A Fracture Mechanics Life Prediction Methodology Applied to Dovetail Fretting
,”
Tribol. Int.
,
39
, pp.
1172
1180
.
6.
McVeigh
,
P. A.
,
Harish
,
G.
,
Farris
,
T. N.
, and
Szolwinski
,
M. P.
, 1999, “
Modeling Interfacial Conditions in Nominally Flat Contacts for Application to Fretting Fatigue of Turbine Engine Components
,”
Int. J. Fatigue
,
21
, pp. S
157
S165
.
7.
Chan
,
K. S.
,
Lee
,
Y.-D.
,
Davidson
,
D. L.
, and
Hudak
,
S. J.
, 2001, “
A Fracture Mechanics Approach to High Cycle Fretting Fatigue Base on the Worst Case Fret Concept
,”
Int. J. Fract.
,
112
, pp.
299
330
.
8.
Wu
,
Y. T.
,
Enright
,
M. P.
, and
Millwater
,
H. R.
, 2002, “
Probabilistic Methods for Design Assessment of Reliability With Inspection
,”
AIAA J.
,
40
(
5
), pp.
937
946
.
9.
Nicholas
,
T.
, 1999, “
Critical Issues in High Cycle Fatigue
,”
Int. J. Fatigue
,
21
, pp.
S221
S231
.
10.
Cowles
,
B. A.
, 1996, “
High Cycle Fatigue in Aircraft Gas Turbines—An Industry Perspective
,”
Int. J. Fract.
,
80
, pp.
147
163
.
11.
Seinturier
,
E.
, 2007, “
Forced Response Computation for Bladed Disks Industrial Practices and Advanced Methods
,” Proceedings of the 12th IFToMM World Congress, June 18–21, Besançon, France, pp.
1
17
.
12.
Srinivasan
,
A. V.
, 1997, “
Flutter and Resonant Vibration Characteristics of Engine Blades
,”
J. Eng. Gas Turbines Power
,
119
, pp.
743
775
.
13.
Bréard
,
C.
,
Vahdati
,
M.
,
Sayma
,
A. I.
, and
Imregun
,
M.
, 2002, “
An Integrated Time-Domain Aeroelasticity Model for the Prediction of Fan Forced Response Due to Inlet Distortion
,”
ASME J. Eng. Gas Turbines Power
,
124
, pp.
197
208
.
14.
Manwaring
,
S. R.
,
Rabe
,
D. C.
,
Lorence
,
C. B.
, and
Wadia
,
A. R.
, 1997, “
Inlet Distortion Generated Forced Response of a Low-Aspect-Ratio Transonic Fan
,”
ASME J. Turbomach.
,
119
, pp.
665
676
.
15.
Gallagher
,
J. P.
,
Nicholas
,
T.
,
Gunderson
,
A.
,
Ruschau
,
J.
,
Miedlar
,
P.
,
Hutson
,
A.
,
Hardy
,
G.
,
Walls
,
D.
,
Annis
,
C.
, and
deLaneuville
,
R.
, 2004, “
Advanced High Cycle Fatigue (HCF) Life Assurance Methodologies
,” Report No. AFRL-ML-WP-TR-2005-4102.
16.
Hilbert
,
G. R.
,
Shang
,
T.
,
Buteau
,
J. D.
, and
Ni
,
R. H.
, 1998, “
Forced Response Prediction of Gas Turbine Rotor Blades
,”
Proceedings of the 3rd National Turbine Engine High Cycle Fatigue Conference
,
San Antonio, TX
.
17.
Marshall
,
J. G.
, and
Green
,
J. S.
, 1998, “
Application of a Time-Linearized Euler Method to Forced Response in a High-Pressure Turbine and Comparison With Engine Test Results
,”
Proceedings of the 3rd National Turbine Engine High Cycle Fatigue Conference
,
San Antonio, TX
.
18.
Sayma
,
A. I.
,
Vahdati
,
M.
,
Lee
,
S. J.
, and
Imregun
,
M.
, 2001, “
Forced Response Analysis of a Vertical Take-Off Lift Fan in Aircraft Configuration
,”
Proceedings of the 6th National Turbine Engine High Cycle Fatigue Conference
,
Jacksonville, FL
.
19.
Panovsky
,
J.
,
Liu
,
J. S.
, and
Bakhale
,
M. A.
, 2002, “
Comparisons of Experimental and Computational Forced Response in a High Pressure Turbine
,”
Proceedings of the 7th National Turbine Engine High Cycle Fatigue Conference
,
Palm Beach Gardens, FL
.
20.
Petrov
,
E. P.
, 2004, “
Direct Parametric Analysis of Forced Nonlinear Response of Bladed Disk With Contact Interfaces
,”
Proceedings of the 9th National Turbine Engine High Cycle Fatigue Conference
,
Pinehurst, NC
.
21.
Kenyon
,
J. A.
, and
Griffin
,
J. H.
, 2002, “
Maximum Mistuned Forced Response Demonstrated on Experimental Bladed Disk
,”
Proceedings of the 7th National Turbine Engine High Cycle Fatigue Conference
, May 14–17, 2002,
Palm Beach, FL
.
22.
Sanders
,
A. J.
,
Rabe
,
D.
, and
Fost
,
R.
, 2002, “
An Experimental Investigation of Stall Flutter in an Advanced Design Low-Aspect Ratio Fan Blisk
,”
Proceedings of the 7th National Turbine Engine High Cycle Fatigue Conference
, May 14–17, 2002,
Palm Beach, FL
.
23.
Calcaterra
,
J.
, and
Naboulsi
,
S.
, 2005, “
Design Methodology to Investigate Contact Fatigue Damage in Turbine Engine Hardware
,”
Int. J. Fatigue
,
27
, pp.
1133
1141
.
24.
Golden
,
P. J.
, 2009, “
Development of a Dovetail Fretting Fatigue Fixture for Turbine Engine Materials
,”
Int. J. Fatigue
,
31
, pp.
620
628
.
25.
ABAQUS Documentation
, 2007, Simulia, Providence, RI.
26.
Gean
,
M. C.
, and
Farris
,
T. N.
, 2005, “
Finite Element Analysis of the Mechanics of Blade/Disk Contacts
,” Proceedings of the 46th AIAA Structures, Structural Dynamics, and Materials Conference, April 18– 21, 2005, Austin, TX..
27.
El Haddad
,
M. H.
,
Smith
,
K. N.
, and
Topper
,
T. H.
, 1979, “
Fatigue Crack Propagation of Short Cracks
,”
ASME J. Eng. Mater. Technol.
,
101
, pp.
42
46
.
28.
NASGRO®
Fracture Mechanics and Fatigue Crack Growth Analysis Software
,
v5.0
, 2006,
NASA-JSC and Southwest Research Institute
,
San Antonio, TX
.
29.
Newman
,
J. C.
, Jr.
, 1984, “
A Crack-Opening Stress Equation for Fatigue Crack Growth
,”
Int. J. Fract.
,
24
, pp.
R131
R135
.
30.
Southwest Research Institute
, 2008, “
DARWIN® User’s Guide
,” San Antonio, TX.
You do not currently have access to this content.