A direct method of aircraft engine health monitoring is introduced that can isolate a degraded engine component in-flight. The method utilizes continuous wavelet transformations of transient engine sensory data to represent their shape attributes in the time scale domain. This enables contrasting the shapes of the current engine outputs with those previously collected from the engine. Continuous wavelet transforms also provide enhanced delineation of the engine transients in the time scale domain. This enables identification of minute differences between the outputs affected by component degradations and between the sensitivities of modeled outputs with respect to the health parameters or components. The presence of these differences is used in this method as evidence of degradation effects on the outputs and/or parameters or components effects on the outputs. The effectiveness of the proposed method is evaluated in engine simulations. The results indicate that with the suite of outputs currently available on-board 70% to 96% of the degraded components simulated can be isolated for new and older engines.

References

1.
Urban
,
L. A.
and
Volponi
,
A. J.
, 1992, “
Mathematical Methods of Relative Engine Performance Diagnostics
,”
SAE Trans., J.Aerosp.
,
101
, Technical Paper No. 922048, pp.
2025
2050
.
2.
Doel
,
D. L.
, 1994, “
TEMPER - A Gas-Path Analysis Tool for Commercial Jet Engines
,”
ASMEJ. Eng. Gas Turbines Power
,
116
(
1
), pp.
82
89
.
3.
Doel
,
D. L.
, 1994, “
An Assessment of Weighted-Least-Squares-Based Gas Path Analysis
,”
ASME J. Eng. Gas Turbines Power
,
116
, pp.
366
373
.
4.
Luppold
,
R. H.
,
Roman
,
J. R.
,
Gallops
,
G. W.
, and
Kerr
,
L. J.
, 1989, “
Estimating In-Flight Engine Performance Variations Using Kalman Filter Concepts
,” AIAA Paper No. AIAA-89-2584.
5.
Kerr
,
L. J.
,
Nemec
,
T. S.
, and
Gallops
,
G. W.
, 1991, “
Real-Time Estimation of Gas Turbine Engine Damage Using a Control Based Kalman Filter Algorithm
,” ASME Paper No. 91-GT-216.
6.
Mathioudakis
,
K.
,
Kamboukos
,
Ph.
, and
Stamatis
,
A.
, 2002, “
Turbofan Performance Deterioration Tracking Using Nonlinear Models and Optimization Techqniques
,”
ASMEJ. Turbomach.
,
124
, pp.
580
587
.
7.
Espana
,
M. D.
and
Gilyard
,
G. B.
, 1993, “
On the Estimation Algorithm used in Adaptive Performance Optimization of Turbofan Engines
,” NASA TM No. 4551.
8.
Kobayashi
,
T.
,
Simon
,
D. L.
, and
Litt
,
J. S.
, 2005, “
Application of a Constant Gain Extended Kalman Filter for In-Flight Estimation of Aircraft Engine Performance Parameters
,” Army Research Laboratory Report No.ARL-TR-2955.
9.
McCusker
,
J. R.
and
Danai
,
K.
, 2010, “
Measurement Selection for Engine Transients by Parameter Signatures
,”
Trans. ASME. J. Eng. Gas Turbines Power
,
132
(
12
), p.
121601
.
10.
Ljung
,
L.
, 1999,
System Identification: Theory for the User
, 2nd ed.,
Prentice-Hall
,
Englewood Cliffs, NJ
.
11.
Volponi
,
A. J.
,
Brotherton
.
T.
,
Luppold
,
R.
, and
Simon
,
D. L.
, 2004, “
Development of an Information Fusion System for Engine Diagnostics and Health Management
,” NASA/TM - 2004-212924, Army Research Laboratory Report No. ARL-TR-3127.
12.
Brotherton
,
T.
,
Volponi
,
A.
,
Luppold
,
R.
, and
Simon
,
D. L.
, 2003, “
eSTORM: Enhanced Self Tuning On-Board Real-Time Engine Model
,”
Proceedings of the 2003 IEEE Aerospace Conference
.
13.
Volponi
,
A. J.
,
DePold
,
H.
,
Ganguli
,
R.
, and
Daguang
,
C.
, 2003, “
The Use of Kalman Filter and Neural Network Methodologies in Gas Turbine Performance Diagnostics: A Comparative Study
,”
ASMEJ. Eng. Gas Turbines Power
,
125
, pp.
917
924
.
14.
Gupta
,
S.
,
Ray
,
A.
,
Sarkar
,
S.
, and
Yasar
,
M.
, 2008, “
Fault Detection and Isolation in Aircraft Gas Turbine Engines. Part 1: Underlying Concept
,”
Proc. Inst. Mech. Eng., Part G: J.Aerosp Eng.
,
222
, pp.
307
318
.
15.
Gupta
,
S.
,
Ray
,
A.
,
Sarkar
,
S.
, and
Yasar
,
M.
, 2008, “
Fault Detection and Isolation in Aircraft Gas Turbine Engines. Part 2: Validation on a Simulation Test Bed
,”
Proc. Inst. Mech. Eng., Part G:J. Aerosp . Eng.
,
222
, pp.
319
330
.
16.
McCusker
,
J. R.
,
Danai
,
K.
, and
Kazmer
,
D. O.
, 2010, “
Validation of Dynamic Models in the Time-Scale Domain
,”
ASME J. Dyn. Syst., Meas., Control
,
132
(
6
), p.
061402
.
17.
Danai
,
K.
and
McCusker
,
J. R.
, 2009, “
Parameter Estimation by Parameter Signature Isolation in the Time-Scale Domain
,”
ASME J. Dyn. Syst., Meas., Control
,
131
(
4
), p.
041008
.
18.
McCusker
,
J. R.
,
Currier
,
T.
, and
Danai
,
K.
, 2011, “
Improved Parameter Estimation by Noise Compensation in the Time-Scale Domain
,”
Signal Process.
,
91
(
1
), pp.
72
84
.
19.
Peng
,
Z. K.
and
Chu
,
F. L.
, 2004, “
Application of the Wavelet Transform in Machine Condition Monitoring and Fault Diagnostics: A Review With Bibliography
,”
Mech.Syst. Signal Process.
,
18
, pp.
199
221
.
20.
Mallat
,
S.
, 1998,
A Wavelet Tour of Signal Processing
, 2nd ed.,
Academic Press
,
San Diego
.
21.
Mallat
,
S.
and
Hwang
,
W. L.
, 1992, “
Singularity Detection and Processing with Wavelets
,”
IEEE Trans. Inf. Theory
,
38
(
2
), pp.
617
643
.
22.
Donoho
,
D. L.
and
Johnstone
,
I. M.
, 1995, “
Adapting to Unknown Smoothness via Wavelet Shrinkage
,”
J. Am. Stat. Assoc.
,
90
(
432
), pp.
1200
1224
.
23.
Chipman
,
H. A.
,
Kolaczyk
,
E. D.
, and
McCulloch
,
R. E.
, 1997, “
Adaptive Bayesian Wavelet Shrinkage
,”
J. Am. Stat. Assoc.
,
92
, pp.
1413
1421
.
You do not currently have access to this content.