An experimental study was performed to investigate fuel property effects on premixed charge compression ignition (PCCI) combustion in a heavy-duty diesel engine. A matrix of research diesel fuels designed by the Coordinating Research Council, referred to as the Fuels for Advanced Combustion Engines (FACE), was used. The fuel matrix design covers a wide range of cetane numbers (30 to 55), 90% distillation temperatures (270 to 340 °C) and aromatics content (20 to 45%). The fuels were tested in a single-cylinder Caterpillar diesel engine equipped with a common-rail fuel injection system. The engine was operated at 900 rpm, a relative air/fuel ratio of 1.2 and 60% exhaust gas recirculation (EGR) for all fuels. The study was limited to a single fuel injection event starting between −30° and 0 °CA after top dead center (aTDC) with a rail pressure of 150 MPa. The brake mean effective pressure (BMEP) ranged from 2.6 to 3.1 bar depending on the fuel and its injection timing. The experimental results show that cetane number was the most important fuel property affecting PCCI combustion behavior. The low cetane number fuels had better brake specific fuel consumption (BSFC) due to more optimized combustion phasing and shorter combustion duration. They also had a longer ignition delay period available for premixing, which led to near-zero soot emissions. The two fuels with high cetane number and high 90% distillation temperature produced significant soot emissions. The two fuels with high cetane number and high aromatics produced the highest brake specific NOx emissions, although the absolute values were below 0.1 g/kW-h. Brake specific HC and CO emissions were primarily a function of the combustion phasing, but the low cetane number fuels had slightly higher HC and lower CO emissions than the high cetane number fuels.

References

References
1.
Zhao
,
F.
,
Asmus
,
T.
,
Assanis
,
D.
,
Dec
,
J. E.
,
Eng
,
J.
, and
Najt
,
P.
, 2003,
Homogeneous Charge Compression Ignition (HCCI) Engines: Key Research and Development Issues
,
Society of Automotive Engineers
,
Warrendale, PA
.
2.
Dec
,
J. E.
, 2009, “
Advanced Compression-Ignition Engines—Understanding the In-Cylinder Processes
,”
Proc. Combust. Inst.
,
32
(
2
), pp.
2727
2742
.
3.
Ladommatos
,
N.
,
Abdelhalim
,
S.
, and
Zhao
,
H.
, 2000, “
The Effects of Exhaust Gas Recirculation on Diesel Combustion and Emissions
,”
Int. J. Engine Res.
,
1
(
1
), pp.
107
126
.
4.
Akihama
,
K.
,
Takatori
,
Y.
,
Inagaki
,
K.
,
Sasaki
,
S.
, and
Dean
,
A. M.
, 2001, “
Mechanism of the Smokeless Rich Diesel Combustion by Reducing Temperature
,” SAE Tech. Pap. 2001-01-0655.
5.
Musculus
,
M. P. B.
, 2006, “
Multiple Simultaneous Optical Diagnostic Imaging of Early-Injection Low-Temperature Combustion in a Heavy-Duty Diesel Engine
,” SAE Tech. Pap. 2006-01-0079.
6.
Zheng
,
M.
,
Tan
,
Y.
,
Mulenga
,
M. C.
, and
Wang
,
M.
, 2007, “
Thermal Efficiency Analyses of Diesel Low-Temperature Combustion Cycles
,” SAE Tech. Pap. 2007-01-4019.
7.
Zannis
,
T. C.
,
Hountalas
,
D. C.
,
Papagiannakis
,
R. G.
, and
Lavendis
,
Y. A.
, 2008, “
Effect of Fuel Chemical Structure and Properties on Diesel Engine Performance and Pollutant Emissions: Review of the Results of Four European Research Programs
,” SAE Tech. Pap. 2008-01-0838.
8.
Zannis
,
T. C.
,
Hountalas
,
D. T.
, and
Papagiannakis
,
R. G.
, 2007, “
Experimental Study of Diesel Fuel Effects on Direct Injection (DI) Diesel Engine Performance and Pollutant Emissions
,”
Energy Fuels
,
21
(
5
), pp.
2642
2654
.
9.
Spreen
,
K. B.
,
Ullman
,
T. L.
, and
Mason
,
R. L.
, 1995, “
Effects of Cetane Number, Aromatics, and Oxygenates on Emissions From a 1994 Heavy-Duty Diesel Engine with Exhaust Catalyst
,” SAE Tech. Pap. 950250.
10.
Neill
,
W. S.
,
Chippior
,
W. L.
,
Gulder
,
O. L.
,
Cooley
,
J.
,
Richardson
,
E. K.
,
Mitchell
,
K.
, and
Fairbridge
,
C.
, 2000, “
Influence of Fuel Aromatics Type on the Particulate Matter and NOx Emissions of a Heavy-Duty Diesel Engine
,” SAE Tech. Pap. 2000-01-1856.
11.
Shimazaki
,
N.
,
Tsuchiya
,
K.
,
Morinaga
,
M.
,
Shibata
,
M.
, and
Shibata
,
Y.
, 2002, “
Parametric Study and Clarification of Determination Factors of Diesel Exhaust Emissions using a Single-Cylinder Engine and Model Fuels∼JCAP Combustion Analysis Working Group Report: Part I
,” SAE Tech. Pap. 2002-01-2824.
12.
Signer
,
M.
,
Heinze
,
P.
,
Mercogliano
,
R.
, and
Stein
,
H. J.
, 1996, “
European Program on Emissions, Fuels and Engine Technologies (EPEFE) Heavy Duty Diesel Study
,” SAE Tech. Pap. 961074.
13.
Ryan
,
T. W.
,
Buckingham
,
J.
,
Dodge
,
L. G.
, and
Olikara
,
C.
, 1998, “
The Effects of Fuel Properties on Emissions from a 2.5gm NOx Heavy-Duty Diesel Engine
,” SAE Tech. Pap. 982491.
14.
Ryan
,
T. W.
,
Erwin
,
J.
,
Mason
,
R. L.
, and
Moulton
,
D. S.
, 1994, “
Relationships Between Fuel Properties and Composition and Diesel Engine Combustion Performance and Emissions
,” SAE Tech. Pap. 941018.
15.
Butts
,
R. T.
,
Foster
,
D. E.
,
Krieger
,
R.
,
Andrie
,
M.
, and
Ra
,
Y.
, 2010, “
Investigation of the Effects of Cetane Number, Volatility, and Total Aromatic Content on Highly-Dilute Low Temperature Diesel Combustion
,” SAE Tech. Pap. 2010-01-0337.
16.
Gallant
,
T.
,
Franz
,
J. A.
,
Alnajjar
,
M. S.
,
Storey
,
J. M. E.
,
Lewis
,
S. A.
,
Sluder
,
C. S.
,
Cannella
,
W. J.
,
Fairbridge
,
C.
,
Hager
,
D.
,
Dettman
,
H.
,
Luecke
,
J.
,
Ratcliff
,
M. A.
, and
Zigler
,
B. T.
, 2009, “
Fuels for Advanced Combustion Engines Research Diesel Fuels: Analysis of Physical and Chemical Properties
,” SAE Tech. Pap. 2009-01-2769.
17.
Cho
,
K.
,
Han
,
M.
,
Sluder
,
C. S.
,
Wagner
,
R. M.
, and
Lilik
,
G. K.
, 2009, “
Experimental Investigation of the Effects of Fuel Characteristics on High Efficiency Clean Combustion in a Light-Duty Diesel Engine
,” SAE Tech. Pap. 2009-01-2669.
18.
Bunting
,
B. G.
,
Eaton
,
S. J.
, and
Crawford
,
R. W.
, 2009, “
Performance Evaluation and Optimization of Diesel Fuel Properties and Chemistry in an HCCI Engine
,” SAE Tech. Pap. 2009-01-2645.
19.
Hosseini
,
V.
,
Neill
,
W. S.
,
Guo
,
H.
,
Dumitrescu
,
C. E.
,
Chippior
,
W. L.
,
Fairbridge
,
C.
, and
Mitchell
,
K.
, 2010, “
Effects of Cetane Number, Aromatic Content and 90% Distillation Temperature on HCCI Combustion of Diesel Fuels
,” SAE Tech. Pap. 2010-01-2168.
20.
Gallant
,
I.
,
Franz
,
J. A.
,
Alnajar
,
M. S.
,
Storey
,
J. M. E.
,
Lewis
,
S. A.
,
Sluder
,
C. S.
,
Cannella
,
W. J.
,
Fairbridge
,
C.
,
Hager
,
D.
,
Dettman
,
H.
,
Luecke
,
J.
,
Ratcliff
,
M. A.
, and
Zigler
,
B. T.
, 2009, “
Fuels for Advanced Combustion Engines Research Diesel Fuels: Analysis and Physical and Chemical Properties
,” SAE Tech. Pap. 2009-01-2769.
21.
Goodger
,
E. M.
, 1975,
Hydrocarbon Fuels: Production, Properties, and Performance of Liquids and Gases
,
Macmillan
,
London, UK
.
22.
Musculus
,
M. P. B.
,
Lachaux
,
T.
,
Pickett
,
L. M.
, and
Idicheria
,
C. A.
, 2007, “
End-of-Injection Over-Mixing and Unburned Hydrocarbon Emissions in a Low-Temperature-Combustion Diesel Engines
,” SAE Tech. Pap. 2007-01-0907.
23.
De Ojeda
,
W.
,
Bulicz
,
T.
,
Han
,
X.
,
Zheng
,
M.
, and
Cornforth
,
F.
, 2011, “
Impact of Fuel Properties on Diesel Low Temperature Combustion
,” SAE Tech. Pap. 2011-01-0329.
You do not currently have access to this content.