This paper presents computational fluid dynamics (CFD) predictions of flow and heat transfer for an over-swirled low-radius preswirl system and comparison with experimental data. The rotor-stator CFD model comprises a stationary domain with the preswirl nozzles and a rotating domain with the receiver holes. The fluid-dynamic conditions feature an over-swirled system with a swirl ratio at the nozzle radius βp = 1.4−1.5 and rotational Reynolds number ReΦ = 0.8 × 106 and 1.2 × 106. Three different treatments for the rotating and stationary domain interface are used to evaluate the influence on the flow and heat transfer behavior: a stationary approach (including Coriolis forces in the rotating domain) with “direct connection” and fixed angle between preswirl nozzle and receiver holes; a stationary approach with circumferential averaging of the velocity at radial bands; and a full transient simulation with the rotating domain capturing the unsteady flow due to the rotating receiver holes. Results at different circumferential angles show high variability in pressure and velocity distributions at the preswirl inlet nozzle radius. Circumferential averaging of these flow parameters lead to an alignment of the pressures and velocities between the three different interface approaches. Comparison with experimental pressure and swirl-ratio data show a quantitative agreement but the CFD results feature a systematic overestimation outward of the preswirl nozzle radius. Heat transfer coefficient distributions at the rotor surface show the effect of the different interface approaches and dependence on the flow structure (for example the impinging jet and vortex structures). The three different interface approaches result in significant differences in the computed heat transfer coefficients between pairs of receiver holes. Circumferentially averaged heat transfer coefficients inward of the receiver holes radius show good agreement between the transient and stationary direct connection interfaces, whereas those for the circumferential averaging interface differ, contrary to the flow parameters, due to smoothing of local effects from the preswirl jets.

References

References
1.
Meierhofer
,
B.
, and
Franklin
,
C. J.
, 1981, “
An Investigation of a Preswirled Cooling Airflow to a Turbine Disc By Measuring the Air Temperature in the Rotating Channels
,” ASME Paper No. 81-GT-132.
2.
Geis
,
T.
,
Dittmann
,
M.
, and
Dullenkopf
,
K.
, 2004, “
Cooling Air Temperature Reduction in a Direct Transfer Preswirl System
,”
ASME J. Eng. Gas Turbines Power
,
126
, pp.
809
815
.
3.
Dittmann
,
M.
,
Dullenkopf
,
K.
, and
Wittig
,
S.
, 2005, “
Direct-Transfer Preswirl System: A One-Dimensional Modular Characterization of the Flow
,”
ASME J. Eng. Gas Turbines Power
,
127
, pp.
383
388
.
4.
Dittmann
,
M.
,
Dullenkopf
,
K.
, and
Wittig
,
S.
, 2004, “
Discharge Coefficients of Rotating Short Orifices With Radiused and Chamfered Inlets
,”
ASME J. Eng. Gas Turbines Power
,
126
. pp.
803
808
.
5.
Dittmann
,
M.
,
Geis
,
T.
,
Schramm
,
V.
,
Kim
,
S.
, and
Wittig
,
S.
, 2002, “
Discharge Coefficients of a Preswirl System in Secondary Air Systems
,”
ASME J. Turbomach.
,
124
, pp.
119
124
.
6.
Jarzombek
,
K.
,
Benra
,
F.-K.
,
Dohmen
,
H. J.
, and
Schneider
,
O.
, 2007, “
CFD Analysis of Flow in High-Radius Pre-Swirl Systems
,” ASME Paper No. GT2007-27404.
7.
Jarzombek
,
K.
,
Benra
F.-K.
,
Dohmen
,
H. J.
, and
Schneider
,
O.
, 2006, “
Flow Analysis in Gas Turbine Pre-Swirl Cooling Air Systems—Variation of Geometric Parameters
,” ASME Paper No. GT2006-90445.
8.
Chew
,
J. W.
,
Ciampoli
,
F.
,
Hills
,
N. J.
, and
Scanlon
,
T.
, 2005, “
Pre-Swirled Cooling Air Delivery System Performance
,” ASME Paper No. GT2005-68323.
9.
Lewis
,
P.
,
Wilson
,
M.
,
Lock
,
G. D.
, and
Owen
,
J. M.
, 2009, “
Effect of Radial Location of Nozzles on Performance of Preswirl Systems: A Computational and Theoretical Study
,”
Proc. IMechE Part A: J. Power and Energy
,
223
, pp.
179
190
.
10.
Snowsill
,
G. D.
, and
Young
,
C.
, 2006, “
The Application of CFD to Underpin the Design of Gas Turbine Pre-swirl Systems
,” ASME Paper No. GT2006-90443.
11.
Chen
,
J.-X.
,
Gan
,
X.
, and
Owen
,
J. M.
, 1996, “
Heat Transfer in an Air-Cooled Rotor Stator System
,”
ASME J. Turbomach.
,
118
, pp.
444
451
.
12.
Djaoui
,
M.
,
Dyment
,
A.
, and
Debuchy
,
R.
, 2001, “
Heat Transfer in a Rotor-Stator System With a Radial Inflow
,”
Eur. J. Mechan. B
,
20
, pp.
371
398
(2001).
13.
Pellé
,
J.
, and
Harmand
,
S.
, 2008, “
Heat Transfer Study in a Discoidal System: The Influence of Rotation and Space Between Disks
,”
Int. J. Heat Mass Transfer
,
51
, pp.
3298
3308
.
14.
Wilson
,
M.
,
Pilbrow
,
R.
, and
Owen
,
J. M.
, 1997, “
Flow and Heat Transfer in a Preswirl Rotor-Stator System
,”
ASME J. Turbomach.
,
119
, pp.
364
373
.
15.
Karabay
,
H.
,
Pilbrow
,
R.
,
Wilson
,
M.
, and
Owen
,
J. M.
, 2000, “
Performance of Pre-Swirl Rotating-Disc Systems
,”
ASME J. Eng. Gas Turbines Power
,
122
, pp.
442
450
.
16.
Karabay
,
H.
,
Wilson
,
M.
, and
Owen
,
J. M.
, 2001, “
Predictions of Effect of Swirl on Flow and Heat Transfer in a Rotating Cavity
,”
Int. J. Heat Fluid Flow
,
22
, pp.
143
155
.
17.
Newton
,
P. J.
,
Yan
,
Y.
,
Stevens
,
N. E.
,
Evatt
,
S. T.
,
Lock
,
G. D.
, and
Owen
,
J. M.
, 2003, “
Transient Heat Transfer Measurements Using Thermochromic Liquid Crystal, Part 1: An Improved Technique
,”
Int. J. Heat Fluid Flow
,
24
, pp.
14
22
.
18.
Yan
,
Y.
,
Gord
,
M. F.
,
Lock
,
G. D.
,
Wilson
,
M.
, and
Owen
,
J. M.
, “
Fluid Dynamics of a Pre-Swirl Rotor-Stator System
,”
ASME J. Turbomach.
,
125
,
641
647
.
19.
Lock
,
G. D.
,
Yan
,
Y.
,
Newton
,
P. J.
,
Wilson
,
M.
, and
Owen
,
J. M.
, 2005, “
Heat Transfer Measurements Using Liquid Crystals in a Preswirl Rotating-Disk System
,”
ASME J. Eng. Gas Turbines Power
,
127
, pp.
375
382
.
20.
Lock
,
G. D.
,
Wilson
,
M.
, and
Owen
,
J. M.
, 2005, “
Influence of Fluid Dynamics on Heat Transfer in a Preswirl Rotating-Disk System
,”
ASME J. Eng. Gas Turbines Power
,
127
, pp.
791
797
.
21.
Kakade
,
V. U.
,
Lock
,
G. D.
,
Wilson
,
M.
,
Owen
,
J. M.
, and
Mayhew
,
J. E.
, 2009, “
Accurate Heat Transfer Measurements Using Thermochromic Liquid Crystal. Part 2: Application to a Rotating Disc
,”
Int. J. Heat.Fluid Flow
,
30
, pp.
950
959
.
22.
Kakade
,
V. U.
,
Lock
,
G. D.
,
Wilson
,
M.
,
Owen
,
J. M.
, and
Mayhew
,
J. E.
, 2009, “
Effect of Radial Location of Nozzles on Heat Transfer in Pre-Swirl Cooling Systems
,” ASME Paper No. GT2009-59090.
23.
Lewis
,
P.
,
Wilson
,
M.
,
Lock
,
G.
, and
Owen
,
J. M.
, 2007, “
Physical Interpretation of Flow and Heat Transfer in Preswirl Systems
,”
ASME J. Eng. Gas Turbines Power
,
129
, pp.
769
777
.
24.
Javiya
,
U.
,
Chew
,
J.
,
Hills
,
N.
,
Zhou
,
L.
,
Wilson
,
M.
, and
Lock
,
G.
, 2010, “
CFD Analysis of Flow and Heat Transfer in a Direct Transfer Pre-Swirl System
,” ASME Paper No. GT2010-22964.
25.
Owen
,
J. M.
, and
Rogers
,
R. H.
, 1995,
Flow and Heat Transfer in Rotating-Disc Systems, Volume 2: Rotating Cavities
,
John Wiley
,
New York
.
26.
Hunt
,
J. C. R.
,
Wray
,
A. A.
, and
Moin
,
P.
, 1988,
Eddies, Stream and Convergence Zones in Turbulent Flows
,
Center for Turbulence Research, CTR-S88, Stanford University
,
Stanford, CA
.
You do not currently have access to this content.