Gas turbine axial compressor performance is heavily influenced by blade fouling. As a result, the gas turbines efficiency and producible power output decrease. Performance degradation of an axial compressor stage due to fouling can be analyzed by means of simulation through computational fluid dynamics (CFD) codes. Usually these methods reproduce the deteriorated blades by increasing their surface roughness and thickness. Another approach is the scaling of compressor stage performance maps. A model based on stage-by-stage techniques was presented in a previous work. This model is able to estimate the modifications of the overall compressor performance map as a function of the operating hours. The aim of the present study is to combine these two different approaches in order to relate the increase of blade computational surface roughness with compressor operating hours.

References

References
1.
Diakunchak
,
I. S.
, 1992, “
Performance Deterioration in Industrial Gas Turbines
,”
ASME J. Eng. Gas Turbines Power
,
114
, pp.
161
168
.
2.
Meher-Homji
,
C. B.
,
Chaker
,
M.
, and
Bromley
,
A. F.
, 2009, “
The Fouling of Axial Flow Compressors—Causes, Effects, Susceptibility and Sensitivity
,” ASME Paper GT2009-59239.
3.
Kurz
,
R.
, and
Brun
,
K.
, 2008, “
Degradation of Gas Turbine Performance in Natural Gas Service
,”
J. Natural Gas Sci. Eng.
,
1
, pp.
95
102
.
4.
Meher-Homji
,
C. B.
,
Chaker
,
M.
, and
Motiwalla
,
H.
, 2001, “
Gas Turbine Performance Deterioration
,”
Proceedings of the 30th Turbomachinery Symposium
,
Houston, TX
.
5.
Meher-Homji
,
C. B.
, 1992, “
Gas Turbine Axial Compressor Fouling—A Unified Treatment of its Effects, Detection and Control
,”
Int. J. Turbo Jet Eng.
,
9
, pp
99
111
.
6.
Meher-Homji
,
C. B.
, and
Bromley
,
A. F.
, 2004, “
Gas Turbine Axial Compressor Fouling and Washing
,”
Proceedings of the 33rd Turbomachinery Symposium
,
Texas A&M University
, Houston, TX.
7.
Bammert
,
K.
, and
Woelk
,
G. U.
, 1980, “
The Influence of Blade Surface Roughness on the Aerodynamic Behavior and Characteristic of an Axial Compressor
,”
ASME J. Eng. Gas Turbines Power
,
102
, pp.
283
287
.
8.
Song
,
T. W.
,
Sohn
,
J. L.
,
Kim
,
T. S.
,
Kim
,
J. H.
, and
Ro
,
S. T.
, 2003, “
An Improved Analytic Model to Predict Fouling Phenomena in the Axial Compressor of Gas Turbine Engines
,”
Proceedings of the International Gas Turbine Congress
, Tokyo, Japan.
9.
Morini
,
M.
,
Pinelli
,
M.
,
Spina
,
P. R.
, and
Venturini
,
M.
, 2010, “
Influence of Blade Deterioration on Compressor and Turbine Performance
,”
ASME J. Eng. Gas Turbines Power
,
132
, p.
032401
.
10.
Gulen
,
S. C.
,
Griffin
,
P. R.
, and
Paolucci
,
S.
, 2002, “
Real-Time On-Line Performance Diagnostics of Heavy-Duty Industrial Gas Turbines
,”
ASME J. Eng. Gas Turbines Power
,
124
, pp.
910
921
.
11.
Srinivasa Rao
,
P. N.
, and
Achutha Naikan
,
V. N.
, 2008, “
An Optimal Maintenance Policy for Compressor of a Gas Turbine Power Plant
,”
ASME J. Eng. Gas Turbines Power
,
130
, p.
021801
.
12.
Morini
,
M.
,
Pinelli
,
M.
,
Spina
,
P. R.
, and
Venturini
,
M.
, 2010, “
Computational Fluid Dynamics Simulation of Fouling on Axial Compressor Stages
,”
ASME J. Eng. Gas Turbines Power
,
132
, p.
072401
.
13.
Morini
,
M.
,
Pinelli
,
M.
,
Spina
,
P. R.
, and
Venturini
,
M.
, 2011, “
Numerical Analysis of the Effects of Non-Uniform Surface Roughness on Compressor Stage Performance
,”
ASME J. Eng. Gas Turbines Power
,
133
(
10
), p.
072402
.
14.
Bagnoli
,
M.
,
Bianchi
,
M.
,
Melino
,
F.
, and
Spina
,
P. R.
, 2008, “
Development and Validation of a Computational Code for Wet Compression Simulation of Gas Turbines
,”
ASME J. Eng. Gas Turbines Power
,
130
, p.
012004
.
15.
Melino
,
F.
,
Peretto
,
A.
, and
Spina
,
P. R.
, 2008, “
Development and Validation of a Model for Axial Compressor Fouling Simulation
,”
J. Eng. Gas Turbine Power
,
130
,
012004
.
16.
Reid
,
L.
, and
Moore
,
R. D.
, 1978, “
Design and Overall Performance of Four Highly-Loaded, High-Speed Inlet Stages for an Advanced High-Pressure-Ratio Core Compressor
,”
NASA TP 1337
.
17.
ICEM CFD 11.0, 2007, User Manual, Ansys Inc, Canonsburg, PA.
18.
Cadorin
,
M.
,
Morini
,
M.
, and
Pinelli
,
M.
, 2010, “
Numerical Analyses of High Reynolds Number Flow of High Pressure Fuel Gas Through Rough Pipes
,”
Int. J. Hydrogen Energy
,
35
, pp.
7568
7579
.
19.
ANSYS CFX 11.0, 2007, User Manual, Ansys Inc., Canonsburg, PA.
20.
Apsley
,
D.
, 2007, “
CFD Calculation of Turbulent Flow with Arbitrary Wall Roughness
,”
Flow Turbulence Combust.
,
78
, pp.
153
175
.
21.
Koch
,
C. C.
, and
Smith
,
L. H.
, 1976, “
Loss Sources and Magnitudes in Axial Flow Compressors
,”
ASME J. Eng. Gas Turbines Power
,
98
, pp.
411
424
.
22.
Tarabrin
,
A. P.
,
Bodrov
,
A. I.
,
Schurovsky
,
V. A.
, and
Stalder
,
J.-P.
, 1998, “
Influence of Axial Compressor Fouling on Gas Turbine Unit Performance Based on Different Schemes and with Different Initial Parameters
,” ASME Paper 98-GT-416.
23.
Howell
,
A. R.
, and
Bonham
,
R. P.
, 1950, “
Overall and Stage Characteristics of Axial Flow Compressors
,”
Proc. IMechE
,
163
, pp.
235
248
.
24.
Schlichting
,
H.
, 1960,
Boundary Layer Theory
,
4th ed.
,
McGraw-Hill
,
New York.
You do not currently have access to this content.