Foreign object damage (FOD) phenomena of two gas-turbine grade silicon nitrides (AS800 and SN282) were assessed at ambient temperature applying impact velocities from 20 to 300 m/s using 1.59-mm diameter hardened steel ball projectiles. Targets in a flexural configuration with two different sizes (thicknesses) of 1 and 2 mm were ballistic-impacted under a fully supported condition. The severity of impact damage, as well as the degree of post-impact strength degradation, increased with increasing impact velocity, increased with decreasing target size, and was greater in SN282 than in AS800 silicon nitride. The critical impact velocity where targets fractured catastrophically decreased with decreasing target size and was lower in SN282 than in AS800. Overall, FOD by steel projectiles was significantly less than that by silicon-nitride ceramic counterparts, due to much decreased Hertzian contact stresses. A correlation of backside cracking velocity versus target size was made based on a simplified elastic foundation analysis.

References

References
1.
Wiederhorn
,
S. M.
, and
Lawn
,
B. R.
, 1977, “
Strength Degradation of Glass Resulting From Impact With Spheres
,”
J. Am. Ceram. Soc.
,
60
(
9-10
), pp.
451
458
.
2.
Wiederhorn
,
S. M.
, and
Lawn
B. R.
, 1979, “
Strength Degradation of Glass Impact With Sharp Particles: I, Annealed Surfaces
,”
J. Am. Ceram. Soc.
,
62
(
1-2
), pp.
66
70
.
3.
Ritter
,
J. E.
,
Choi
,
S. R.
,
Jakus
,
K.
,
Whalen
,
P. J.
, and
Rateick
,
R. G.
, 1991, “
Effect of Microstructure on the Erosion and Impact Damage of Sintered Silicon Nitride
,”
J. Mater. Sci.
,
26
, pp.
5543
5546
.
4.
Akimune
,
Y.
,
Katano
,
Y.
, and
Matoba
,
K.
, 1989, “
Spherical-Impact Damage and Strength Degradation in Silicon Nitrides for Automobile Turbocharger Rotors
,”
J. Am. Ceram. Soc.
,
72
(
8
), pp.
1422
1428
.
5.
Knight
,
C. G.
,
Swain
,
M. V.
, and
Chaudhri
,
M. M.
, 1977, “
Impact of Small Steel Spheres on Glass Surfaces
,”
J. Mater. Sci.
,
12
, pp.
1573
1586
.
6.
Rajendran
,
A. M.
, and
Kroupa
,
J. L.
, 1989, “
Impact Design Model for Ceramic Materials
,”
J. Appl. Phys
,
66
(
8
), pp.
3560
3565
.
7.
Taylor
,
L. N.
,
Chen
,
E. P.
, and
Kuszmaul
,
J. S.
, 1986 “
Microcrack-Induced Damage Accumulation in Brittle Rock Under Dynamic Loading
,”
Comp. Meth. Appl. Mech. Eng.
,
55
, pp.
301
320
.
8.
Mouginot
,
R.
, and
Maugis
,
D.
, 1985, “
Fracture Indentation Beneath Flat and Spherical Punches
,”
J. Mater. Sci.
,
20
, pp.
4354
4376
.
9.
Evans
,
A. G.
, and
Wilshaw
,
T. R.
, 1977, “
Dynamic Solid Particle Damage in Brittle Materials: An Appraisal
,”
J. Mater. Sci.
,
12
, pp.
97
116
.
10.
Liaw
,
B. M.
,
Kobayashi
,
A. S.
, and
Emery
,
A. G.
, 1984, “
Theoretical Model of Impact Damage in Structural Ceramics
,”
J. Am. Ceram. Soc.
,
67
, pp.
544
548
.
11.
van Roode
,
M.
,
Jimenez
,
O.
,
McClain
,
J.
,
Price
,
J.
,
Parthasarathy
,
V.
,
Poormon
,
K.
,
Ferber
,
K.
, and
Lin
,
H.-T.
, 2002, “
Ceramic Gas Turbine Materials Impact Evaluation
,” ASME Paper No. GT2002-30505.
12.
Richerson
,
D. W.
, and
Johansen
,
K. M.
, 1982, “
Ceramic Gas Turbine Engine Demonstration Program
,” Final Report, DARPA/Navy Contract N00024-76-C-5352, Garrett Report No. 21–4410.
13.
Boyd
,
G. L.
, and
Kreiner
,
D. M.
, 1987, “
AGT101/ATTAP Ceramic Technology Development
,”
Proceedings of the Twenty-Fifth Automotive Technology Development Contractors’ Coordination Meeting, Dearborn, MI
, October 26–29, 1987;
SAE
,
Warrendale, PA
, p.
101
.
14.
van Roode
,
M.
,
Brentnall
,
W. D.
,
Smith
,
K. O.
,
Edwards
,
B.
,
McClain
,
J.
, and
Price
,
J. R.
, 1997, “
Ceramic Stationary Gas Turbine Development – Fourth Annual Summary
,” ASME Paper No. 97-GT-317.
15.
Akimune
,
T.
,
Akiba
,
T.
, and
Ogasawara
,
T.
, 1995, “
Damage Behavior of Silicon Nitride for Automotive Gas Turbine Use When Impacted by Several Types of Spherical Particles
,”
J. Mater. Sci.
,
30
, pp.
1000
1004
.
16.
Yoshida
,
H.
,
Kano
,
S.
,
Hasegawa
,
Y.
,
Shimamori
,
T.
, and
Yoshida
,
M.
, 1996, “
Particle Impact Phenomena of Silicon Nitride Ceramic
,”
Philo. Magazine A
,
74
(
5
), pp.
1287
1297
.
17.
Peralta
,
A. D.
, and
Yoshida
,
H.
, 2003,
Ceramic Gas Turbine Component Development and Characterization
, Vol.
2
,
M.
van Roode
,
M. K.
Ferber
, and
D. W.
Richerson
, eds.,
ASME
,
New York, NY
, pp.
665
692
.
18.
Deshpande
,
V. S.
, and
Evans
,
E. G.
, 2008, “
Inelastic Deformation and Energy Dissipation in Ceramics: A Mechanism-Based Constitutive Model
,”
J. Mech. Phys. Solids
,
56
, pp.
3077
3100
.
19.
Choi
,
S. R.
,
Pereira
,
J. M.
,
Janosik
,
L. A.
, and
Bhatt
,
R. T.
, 2002, “
Foreign Object Damage of Two Gas-Turbine Grade Silicon Nitrides at Ambient Temperature
,”
Ceram. Eng. Sci. Proc.
,
23
(
3
), pp.
193
202
.
20.
Choi
,
S. R.
,
Pereira
,
J. M.
,
Janosik
,
L. A.
, and
Bhatt
,
R. T.
, 2004, “
Foreign Object Damage in Flexure Bars of Two Gas-Turbine Grade Silicon Nitrides
,”
Mater. Sci. Eng. A
,
379
, pp.
411
419
.
21.
Choi
,
S. R.
,
Pereira
,
J. M.
,
Janosik
,
L. A.
, and
Bhatt
,
R. T.
, 2003, “
Foreign Object Damage of Two Gas-Turbine Grade Silicon Nitrides in a Thin Disk Configuration
,” ASME Paper No. GT2003-38544.
22.
Choi
,
S. R.
,
Pereira
,
J. M.
,
Janosik
,
L. A.
, and
Bhatt
,
R. T.
, 2004, “
Foreign Object Damage in Disks of Gas-Turbine-Grade Silicon Nitrides by Steel Ball Projectiles at Ambient Temperature
,”
J. Mater. Sci.
,
39
, pp.
6173
6182
.
23.
Choi
,
S. R.
,
Racz
,
Z.
,
Bhatt
,
R. T.
,
Brewer
,
D.
, and
Gyekenyesi
,
J. P.
, 2005, “
Effect of Projectile Materials on Foreign Object Damage of a Gas-Turbine Grade Silicon Nitride
,” ASME Paper No. GT2005-68866.
24.
Choi
,
S. R.
,
Racz
,
Z.
,
Bhatt
,
R. T.
, and
Brewer
,
D.
, 2006 “
Foreign Object Damage in a Gas-Turbine Grade Silicon Nitride by Spherical Projectiles of Various Materials
,”
NASA TM-2006-214330
,
NASA Glenn Research Center
,
Cleveland, OH
.
25.
Choi
,
S. R.
, 2008, “
Foreign Object Damage Behavior in a Silicon Nitride Ceramic by Spherical Projectiles of Steels and Brass
,”
Mater. Sci. Eng. A
,
497
, pp.
160
167
.
26.
Choi
,
S. R.
, 2009, “
Foreign Object Damage in Gas-Turbine Grade Silicon Nitrides by Silicon Nitride Ball Projectiles
,” ASME Paper No. GT2009-59031.
27.
Choi
,
S. R.
, 2008, “
Foreign Object Damage Phenomenon by Steel Ball Projectiles in a SiC/SiC Ceramic Matrix Composite at Ambient and Elevated Temperatures
,”
J. Am. Ceram. Soc.
,
91
(
9
), pp.
2963
2968
.
28.
Choi
,
S. R.
,
Alexander
,
D. J.
, and
Kowalik
,
R. W.
, 2008, “
Foreign Object Damage in an Oxide/Oxide Composite at Ambient Temperature
,” ASME Paper No. GT2008-50505.
29.
Faucett
,
D. C.
,
Alexander
,
D. J.
, and
Choi
,
S. R.
, 2010, “
Static-Contact and Foreign-Object-Object Damages in an Oxide/Oxide (N720/Alumina) Ceramic Matrix Composite: Comparison with N720/Aluminosilicate
,”
Processing & Properties of Advanced Ceramics & Composites, Ceramic Transactions
, Vol.
220
, Wiley, New York, pp.
221
242
.
30.
Choi
,
S. R.
, and
Rácz
,
Z.
, 2010, “
Target Size Effects on Foreign Object Damage in Gas-Turbine Grade Silicon Nitrides by Ceramic Ball Projectiles
,” ASME Paper No. GT2010-23574.
31.
Vick
,
M. J.
,
Heyes
,
A.
, and
Pullen
,
K.
, 2009, “
Design Overview of A Three-Kilowatt Recuperated Ceramic Turboshaft Engine
,” ASME Paper No. GT2009-60297.
32.
ASTM C 1259
, 2011,
Annual Book of ASTM Standards
, Vol.
15.01
,
ASTM
,
West Conshohocken, PA
.
33.
ASTM C 1327
, 2011,
Annual Book of ASTM Standards
, Vol.
15.01
,
ASTM
,
West Conshohocken, PA
.
34.
ASTM C 1161
, 2011,
Annual Book of ASTM Standards
, Vol.
15.01
,,
ASTM
,
West Conshohocken, PA
.
35.
ASTM C 1421
, 2011,
Annual Book of ASTM Standards
, Vol.
15.01
,,
ASTM
,
West Conshohocken, PA
.
36.
Boresi
,
A. P.
,
Sidebottom
,
O. M.
,
Seely
,
F. B.
, and
Smith
,
J. O.
, 1978,
Advanced Mechanics of Materials
,
3rd ed.
,
John Wiley & Sons
,
New York
, pp.
369
377
.
You do not currently have access to this content.