There is a widespread interest in the application of gas turbine power augmentation technologies such as evaporative cooling and mechanical chilling in the mechanical drive and power generation markets. Very often, the selection of the design point is based on the use of American Society of Heating and Refrigeration Engineers (ASHRAE) data or a design point that is in the basis of design for the project. This approach can be detrimental and can result in a non optimal solution. In order to evaluate the benefits of power augmentation, users can use locally collected weather data, or recorded hourly bin data set from databases such as typical meteorological year (TMY), engineering weather data (EWD), and integrated weather surface (IWS). This paper will cover a suggested approach for the analysis of climatic data for power augmentation applications and show how the selection of the design point can impact performance. The final selection of the design point depends on the specific application, the revenues generated and installation costs. To the authors’ knowledge, this is the first attempt to treat this topic in a structured analytical manner by comparing available database information with actual climatic conditions.

References

References
1.
Chaker
,
M.
, and
Meher-Homji
,
C. B.
, 2007, “
Evaporative Cooling of Gas Turbine Engines—Climatic Analysis and Application in High Humidity Regions
,” ASME Paper No. 2007GT-27866.
2.
Meher-Homji
,
C. B.
,
Chaker
,
M.
, and
Motiwalla
,
H.
, 2001, “
Gas Turbine Performance Deterioration
,”
Proceedings of the 30th Turbomachinery Symposium
,
Houston, TX
, Sept. 17–20.
3.
Meher-Homji
,
C. B.
, and
Mee
,
T. R.
, 1999, “
Gas Turbine Power Augmentation by Fogging of Inlet Air
,”
Proceedings of the 28th Turbomachinery Symposium
,
Houston, TX
, September.
4.
2008,
Department of Market Monitoring—Annual Report on Market Issues and Performance
,
California Independent System Operator
.
5.
Johnson
,
R. S.
, 1988, “
The Theory and Operation of Evaporative Coolers for Industrial Gas Turbine Installations
,” ASME Paper No. 88-GT-41.
6.
Chaker
,
M.
,
Meher-Homji
,
C. B.
, and
Mee
T. R.
, III
, 2004, “
Inlet Fogging of Gas Turbine Engines-Part A: Fog Droplet Thermodynamics, Heat Transfer and Practical Considerations
,”
ASME J. Eng. Gas Turbines Power
,
126
, pp.
545
558
.
7.
Chaker
,
M.
,
Meher-Homji
,
C. B.
, and
Mee
T. R.
, III
, 2004, “
Inlet Fogging of Gas Turbine Engines-Part B: Fog Droplet Sizing Analysis, Nozzle Types, Measurement and Testing
,”
ASME J. Eng. Gas Turbines Power
,
126
, pp.
559
570
.
8.
Chaker
,
M.
,
Meher-Homji
,
C. B.
, and
Mee
T. R.
, III
, 2002, “
Inlet Fogging of Gas Turbine Engines-Part C: Fog Behavior in Inlet Ducts, CFD Analysis and Wind Tunnel Experiments
,”
ASME J. Eng. Gas Turbines Power
,
126
, pp.
571
580
.
9.
Meher-Homji
,
C. B.
, and
Mee
,
T. R.
, 2000, “
Inlet Fogging of Gas Turbine Engines-Part A: Theory, Psychrometrics and Fog Generation and Part B: Practical Considerations, Control and O&M Aspects
,” ASME Paper Nos. 2000-GT-0307 and 2000-GT-0308.
10.
Bhargava
,
R. K.
,
Meher-Homji
,
C. B.
,
Chaker
,
M. A.
,
Peretto
,
A.
,
Bianchi
,
M.
,
Melino
,
F.
, and
Ingistov
,
S.
, 2005, “
Gas Turbine Fogging Technology—A State-of-the-Art Review, Part I: Inlet Evaporative Fogging- Analytical and Experimental Aspects
,”
ASME J. Eng. Gas Turbines Power
,
129
, pp.
443
453
.
11.
Bhargava
,
R. K.
,
Meher-Homji
,
C. B.
,
Chaker
,
M. A.
,
Peretto
,
A.
,
Bianchi
,
M.
,
Melino
,
F.
, and
Ingistov
,
S.
, 2005, “
Gas Turbine Fogging Technology—A State-of-the-Art Review, Part II: Overspray Fogging- Analytical and Experimental Aspects
,”
ASME J. Eng. Gas Turbines Power
,
129
, pp.
454
460
.
12.
Bhargava
,
R. K.
,
Meher-Homji
,
C. B.
,
Chaker
,
M. A.
,
Peretto
,
A.
,
Bianchi
,
M.
,
Melino
,
F.
, and
Ingistov
,
S.
, 2005, “
Gas Turbine Fogging Technology—A State-of-the-Art Review, Part III: Practical Considerations and Operational Experience
,”
ASME J. Eng. Gas Turbines Power
,
129
, pp.
461
472
.
13.
Bhargava
,
R.
, and
Meher-Homji
,
C. B.
, 2002, “
Parametric Analysis of Existing Gas Turbines With Inlet Evaporative and Overspray Fogging
,”
ASME J. Gas Turbines Power
,
127
, pp.
145
158
.
14.
Zheng
,
Q.
,
Sun
,
Y.
,
Li
,
S.
, and
Wang
,
Y.
, 2002, “
Thermodynamic Analyses on Wet Compression Process in the Compressor of Gas Turbine
,” ASME Paper No. GT2002-30590.
15.
Zheng
,
Q.
,
Li
,
M.
, and
Sun
,
Y.
, 2003, “
Thermodynamic Performance of Wet Compression and Regenerative (WCR) Gas Turbine
,” ASME Paper No. GT2003-38517.
16.
Zheng
,
Q.
, and
Li
,
M.
, 2004, “
Wet Compression System Stability Analysis: Part II—Simulations and Bifurcation Analysis
,” ASME Paper No. GT-2004-54020.
17.
Khan
,
J. R.
, and
Wang
,
T.
, 2005, “
Development of the Computational Program FogGT for Wet Compression via Fog/Overspray Gas Turbine Inlet Cooling
,”
Energy Conversion and Conservation Center, University of New Orleans
, ECCC Report No. 2005-07.
18.
Khan
,
J. R.
, and
Wang
,
T.
, 2006, “
Fog and Overspray Cooling for Gas Turbine Systems With Low Calorific Value Fuels
,” ASME Paper No. GT-2006-90396.
19.
Hill
,
P. G.
, 1963, “
Aerodynamic and Thermodynamic Effects of Coolant Ingestion on Axial Flow Compressor
,” Aeronaut. Q., Nov., pp.
331
348
.
20.
White
,
A. J.
, and
Meacock
,
A. J.
, 2003, “
An Evaluation of the Effects of Water Injection on Compressor Performance
,” ASME Paper No. GT2003-38237.
21.
Roumeliotis
,
I.
, and
Mathioudakis
,
K.
, 2007, “
Water Injection Effects on Compressor Stage Operation
,”
ASME J. Eng. Gas Turbines Power
,
129
, pp.
778
784
.
22.
Jolly
,
S.
, 2003, “
Performance Enhancement of GT 24 With Wet Compression
,” Power Gen. International, 9–11 Dec.
23.
Bagnoli
,
M.
,
Bianchi
,
M.
Melino
,
F.
,
Peretto
,
A.
,
Spina
,
P. R.
,
Bhargava
,
R.
, and
Ingistov
,
S.
, 2004, “
A Parametric Study of Interstage Injection on GE Frame 7EA Gas Turbine
,” ASME Paper No. GT2004-53042.
24.
Bagnoli
,
M.
,
Bianchi
,
M.
,
Melino
,
F.
, and
Spina
,
P. R.
, 2006, “
Development and Validation of a Computational Code for Wet Compression Simulation of Gas Turbines
,” ASME Paper No. GT-2006-90342.
25.
Bagnoli
,
M.
,
Bianchi
,
M.
,
Melino
,
F.
,
Peretto
,
A.
,
Spina
,
P. R.
,
Ingistov
,
S.
, and
Bhargava
,
R. K.
, 2006, “
Application of a Computational Code to Simulate Interstage Injection Effects on GE Frame 7EA Gas Turbine
,” ASME Paper No. GT-2006-90343.
26.
Tillman
,
T.
, and
Armstrong
,
P.
, 2005, “
Weather-Rated Economics of Gas Turbine Installations—A Call for an Alternate Rating Point
,”
PowerGen International 2005
,
Las Vegas, NV
.
27.
Chaker
,
M.
,
Meher-Homji
,
C.
,
Mee
,
T.
, and
Nicholson
,
A.
, 2003, “
Inlet Fogging of Gas Turbine Engines—Detailed Climatic Analysis of Gas Turbine Evaporative Cooling Potential
,”
ASME J. Gas Turbines Power
,
125
(
1
), pp.
300
309
.
28.
Chaker
,
M.
, and
Meher-Homji
,
C. B.
, 2006, “
Inlet Fogging of Gas Turbine Engines—Detailed Climatic Analysis of Gas Turbine Evaporative Cooling Potential for International Locations
,”
ASME J. Eng. Gas Turbines Power
,
128
, pp.
815
825
.
29.
McNeilly
,
D.
, 2000, “
Application of Evaporative Coolers for Gas Turbine Power Plants
,” ASME Paper No. 2000-GT-303.
You do not currently have access to this content.