Lean premixed combustion is widely used to achieve a better compromise between nitric oxide (NOx) emissions and combustion efficiency (related to CO levels). However, combustor operation near the lean blowout (LBO) limit can render the flame unstable and lead to oscillations, flashback, or extinction, thereby limiting the potential range of lean combustion application. Recent interest in integrated gasification combined cycle plants and syngas combustion requires an improved understanding of the role of hydrogen on the combustion process. Therefore, in the present study, combustion of pure methane and blended methane-hydrogen with hydrogen-levels up to 80% by volume has been conducted in a swirl stabilized premixed combustor. Particle imaging velocimetry (PIV) and OH* chemiluminescence imaging have been used in this study. Results show that there is a single-ringed structure of internal recirculation zone (IRZ) in the non-reacting flow, while in the reacting flows, there is a more complex flow pattern with a two-celled IRZ structure in which the axial velocity near the center-axis is oriented downstream. As the equivalence ratio decreases, the width of IRZ decreases in methane flames while it increases in hydrogen-enriched flames, and the flame shape changes from conical to an elongated columnar shape, especially in hydrogen-enriched flames. There are two different modes of vortex breakdown observed, spiral mode in methane flames and bubble mode in hydrogen-enriched flames. These differences between the behavior of the methane-only and hydrogen-enriched flames lead to different behavior of the flame as it approaches the lean blowout. The differences in the mechanisms of LBO in pure methane and hydrogen-enriched premixed flames are examined and explained in the present study.

References

References
1.
Westbrook
,
C. K.
, and
Dryer
,
F. L.
, 1984, “
Chemical Kinetic Modeling of Hydrocarbon Combustion
,”
Prog. Energy Combust. Sci.
,
10
, pp.
1
57
.
2.
Zimont
,
V. L.
, 1979, “
The Theory of Turbulent Combustion at High Reynolds Numbers
,”
Combustion Explos. Shock Waves
,
15
, pp.
305
311
.
3.
Chao
,
Y. C.
,
Chang
,
Y. L.
,
Wu
,
C. Y.
, and
Cheng
,
T. S.
, 2000, “
An Experimental Investigation of the Blowout Process of a Jet Flame
,”
Proc. Combust. Inst.
,
28
, pp.
335
342
.
4.
Nicholson
,
H.
, and
Field
,
J.
, 1949, “
Some Experimental Techniques for the Investigation of Mechanism of Flame Stabilization in the Wakes of Bluff Bodies
,”
Proc. Combust. Inst.
,
3
, pp.
44
68
.
5.
De Zilwa
,
S. R. N.
,
Uhm
,
J. H.
, and
Whitelaw
,
J. H.
, 2000, “
Combustion Oscillations Close to the Lean Flammability Limit
,”
Combust. Sci. Technol.
,
160
, pp.
231
258
.
6.
Muruganandam
,
T. M.
,
Nair
,
S.
,
Neumeier
,
Y.
,
Lieuwen
,
T.
, and
Seitzman
,
J. M.
, 2002, “
Optical and Acoustic Sensing of Lean Blowout Precursors
,”
Proceedings of the 38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit
, Indianapolis, Indiana, AIAA Paper No. 2002-3732.
7.
Nair
,
S.
, and
Lieuwen
,
T.
, 2005, “
Acoustic Detection of Blowout in Premixed Flames
,”
J. Propul. Power
,
21
(
1
), pp.
32
39
.
8.
Thiruchengode
,
M.
,
Nair
,
S.
,
Prakash
,
S.
,
Scarborough
,
D.
,
Neumeier
,
Y.
,
Lieuwen
,
T.
,
Jagoda
,
J.
,
Seitzman
,
J.
, and
Zinn
,
B.
, 2003, “
An Active Control System for LBO Margin Reduction in Turbine Engines
,”
Proceedings of the 41st AIAA Aerospace Sciences Meeting and Exhibit
, Reno, Nevada, AIAA Paper No. 2003-1008.
9.
Zukoski
,
E. E.
, and
Marble
,
F. E.
, 1956, “
Experiments Concerning the Mechanism of Flame Blowoff From Bluff Bodies
,”
Proceedings of the Gas Dynamics Symposium on Aerothermochemistry
, pp.
205
210
.
10.
Zukoski
,
E. E.
, and
Marble
,
F. E.
, 1955, “
The Role of Wake Transition in the Process of Flame Stabilization on Bluff Bodies
,”
AGARD Combustion Researches and Reviews
, pp.
167
180
.
11.
King
,
C. R.
, 1957, “
Experimental Investigation of Effects of Combustion Chamber Length and Inlet Total Temperature, Total pressure, and Velocity on Afterburner Performance
,” Report No. NACA RM E57C07.
12.
Hottel
,
H. C.
,
Williams
,
G. C.
,
Jensen
,
W. P.
,
Tobey
,
A. C.
, and
Burrage
,
M. R.
, 1963, “
Modeling Studies of Baffle-Type Combustors
,”
Proceedings of the Ninth Symposium (International) on Combustion
,
9
(
1
), pp.
923
935
.
13.
Glassman
,
I.
, 1996,
Combustion
,
Academic Press
,
New York
.
14.
Noble
,
D. R.
,
Zhang
,
Q.
,
Shareef
,
A.
,
Tootle
,
J.
,
Meyers
,
A.
, and
Lieuwen
,
T.
, 2006, “
Syngas Mixture Composition Effects Upon Flashback and Blowout
,”
Proceedings of ASME Turbo Expo
, Barcelona, Spain, ASME Paper No. GT2006-90470.
15.
Li
,
H.
,
Zhou
,
X.
,
Jeffries
,
J. B.
, and
Hanson
,
R. K.
, 2007, “
Active Control of Lean Blowout in a Swirl-Stabilized Combustor Using a Tunable Diode Laser
,”
Proc. Combust. Inst.
,
31
, pp.
3215
3223
.
16.
Gutmark
,
E.
,
Parr
,
T. P.
,
Hanson-Parr
,
D. M.
, and
Schadow
,
K. C.
, 1991, “
Use of Chemiluminescence and Neural Networks in Active Combustion Control
,”
Proc. Combust. Inst.
,
23
, pp.
1101
1106
.
17.
Sturgess
,
G. J.
,
Heneghan
,
S. P.
,
Vangsness
,
M. D.
,
Ballal
,
D. R.
,
Lesmerises
,
A. L.
, and
Shouse
,
D.
, 1993, “
Effects of Back-Pressure in a Lean Blowout Research Combustor
,”
J. Eng. Gas Turbines Power
,
115
, pp.
486
498
.
18.
Durbin
,
M. D.
, and
Ballal
,
D. R.
, 1996, “
Studies of Lean Blowout in a Step Swirl Combustor
,”
J. Eng. Gas Turbines Power
,
118
, pp.
72
77
.
19.
Longwell
,
J. P.
, 1953, “
Flame Stabilization by Bluff Bodies and Turbulent Flames in Ducts
,”
Proc. Combust. Inst.
,
4
, pp.
90
97
.
20.
Williams
,
F. A.
, 1966, “
Flame Stabilization of Premixed Turbulent Gases
,”
Applied Mechanics Surveys
,
Spartan
,
Washington
, pp.
1157
1170
.
21.
Williams
,
G. C.
,
Hottel
,
H. C.
, and
Scurlock
,
A. C.
, 1949, “
Flame Stabilization and Propagation in High Velocity Gas Streams
,”
Proc. Combust. Inst.
,
3
, pp.
21
40
.
22.
Kundu
,
K. M.
,
Banerjee
,
D.
, and
Bhaduri
,
D.
, 1980, “
On Flame Stabilization by Bluff-Bodies
,”
J. Eng. Power
,
102
, pp.
209
214
.
23.
Kundu
,
K. M.
,
Banerjee
,
D.
, and
Bhaduri
,
D.
, 1977, “
Theoretical Analysis on Flame Stabilization by a Bluff-Body
,”
Combust. Sci. Technol.
,
17
, pp.
153
162
.
24.
Zukoski
,
E. E.
, 1954, “
Flame Stabilization on Bluff Bodies at Low and Intermediate Reynolds Numbers
,” Ph.D. thesis, California Institute of Technology, Pasadena, CA.
25.
Spalding
,
D. B.
, 1953, “
Theoretical Aspects of Flame Stabilization
,”
Aircr. Eng.
,
25
, pp.
264
276
.
26.
Zukoski
,
E. E.
, 1985, “
Afterburners
,”
Aerothermodynamics of Aircraft Engine Components
,
G. C.
Oates
, ed.,
AIAA
,
New York
, pp.
47
144
.
27.
Yamaguchi
,
S.
,
Ohiwa
,
N.
, and
Hasegawa
,
T.
, 1985, “
Structure and Blow-Off Mechanism of Rod-Stabilized Premixed Flame
,”
Combust. Flame
,
62
, pp.
31
41
.
28.
Pan
,
J. C.
,
Vangsness
,
M. D.
, and
Ballal
,
D. R.
, 1992, “
Aerodynamics of Bluff-Body Stabilized Confined Turbulent Premixed Flames
,”
J. Eng. Gas Turbines Power
,
114
(
4
), pp.
783
789
.
29.
Chaudhuri
,
S.
,
Kostka
,
S.
,
Renfro
,
M. W.
, and
Cetegen
,
B. M.
, 2010, “
Blowoff Dynamics of Bluff Body Stabilized Turbulent Premixed Flames
,”
Combust. Flame
,
157
, pp.
790
802
.
30.
Füri
,
M.
,
Papas
,
P.
, and
Monkewitz
,
P. A.
, 2000, “
Non-Premixed Jet Flame Pulsations Near Extinction
,”
Proc. Combust. Inst.
,
28
, pp.
831
838
.
31.
Christiansen
,
E. W.
,
Law
,
C. K.
, and
Sung
,
C. J.
, 2000, “
The Role of Pulsating Instability and Global Lewis Number on the Flammability Limit of Lean Heptane/Air Flames
,”
Proc. Combust. Inst.
,
29
, pp.
807
814
.
32.
Shanbhogue
,
S.
,
Husain
,
S.
, and
Lieuwen
,
T.
, 2009, “
Lean Blowoff of Bluff Body Stabilized Flames: Scaling and Dynamics
,”
Prog. Energy Combust. Sci.
,
35
, pp.
98
120
.
33.
Zhang
,
Q.
,
Noble
,
D. R.
,
Shanbhogue
,
S. J.
, and
Lieuwen
,
T.
, 2007, “
Impacts of Hydrogen Addition on Near-Lean Blowout Dynamics in a Swirling Combustor
,” ASME Paper No. GT2007-27308.
34.
Hawkes
,
E. R.
, and
Chen
,
J. H.
, 2004, “
Direct Numerical Simulation of Hydrogen-Enriched Lean Premixed Methane Air Flames
,”
Combust. Flame
,
138
, pp.
242
258
.
35.
Choundhuri
,
A. R.
, and
Gollahalli
,
S. R.
, 2000, “
Combustion Characteristics of Hydrogen–Hydrocarbon Hybrid Fuels
,”
Int. J. Hydrogen Energy
,
25
, pp.
451
462
.
36.
Choundhuri
,
A. R.
, and
Gollahalli
,
S. R.
, 2003, “
Characteristics of Hydrogen–Hydrocarbon Composite Fuel Turbulent Jet Flame
,”
Int. J. Hydrogen Energy
,
28
, pp.
445
454
.
37.
Karim
,
G. A.
,
Wierzba
,
I.
, and
Al-Alousi
,
Y.
, 1996, “
Methane–Hydrogen Mixture as Fuels
,”
Int. J. Hydrogen Energy
,
21
, pp.
625
631
.
38.
Turns
S. R.
, 2000,
An Introduction to Combustion: Concepts and Applications
,
2nd ed.
,
McGraw-Hill
,
New York
.
39.
Littlejohn
,
D.
, and
Cheng
,
R. K.
, 2007, “
Fuel Effects on a Low-Swirl Injector for Lean Premixed Gas Turbines
,”
Proc. Combust. Inst.
,
31
(
2
), pp.
3155
3162
.
40.
Melling
,
A.
, 1997, “
Tracer Particles and Seeding for Particle Image Velocimetry
,”
Meas. Sci. Technol.
,
8
, pp.
1406
1416
.
41.
Lourenco
,
L. M.
, and
Krothapalli
,
A.
, 2000, “
True Resolution PIV: A Mesh-Free Second Order Accurate Algorithm
,”
Proceedings of the International Conference on Applications of Laser Fluid Mechanics
, Lisbon, Portugal.
42.
Westerweel
,
J.
, 1993, “
Digital Particle Image Velocimetry-Theory and Application
,” Ph.D. thesis, Delft University of Technology, The Netherlands.
43.
Faler
,
J. H.
, and
Leibovich
,
S.
, 1977, “
Disrupted States of Vortex Flow and Vortex Breakdown
,”
Phys. Fluids
,
20
, pp.
1385
400
.
44.
Syned
,
N.
,
Gupta
,
A. K.
, and
Beer
,
J. M.
, 1975, “
Temperature and Density Gradients Arising With the Precessing Vortex Core and Vortex Breakdown in Swirl Burners
,”
Proceedings of the 15th International Symposium on Combustion
, pp.
587
597
.
45.
Nestor
,
O. H.
, and
Olsen
,
H. N.
, 1960, “
Numerical Methods for Reducing Line and Surface Probe Data
,”
SIAM Rev.
,
2
(
3
), pp.
200
207
.
46.
Blades
,
M. W.
, and
Horlick
,
G.
, 1980, “
Photodiode Array Measurement System for Implementing Abel Inversions on Emission From an Inductively Coupled Plasma
,”
Appl. Spectrosc.
,
34
(
6
), pp.
696
699
.
47.
Engel
,
U.
,
Prokisch
,
C.
,
Voges
,
E.
,
Hieftje
,
G. M.
, and
Broekaert
,
J. A. C.
, 1998, “
Spatially Resolved Measurements and Plasma Tomography With Respect to the Rotational Temperatures for a Microwave Plasma Torch
,”
J. Anal. At. Spectrom.
,
13
, pp.
955
961
.
You do not currently have access to this content.