An experimental analysis of confined premixed turbulent methane/air and hydrogen/air jet flames is presented. A generic lab scale burner for high-velocity preheated jets equipped with an optical combustion chamber was designed and set up. The size and operating conditions were configured to enable flame stabilization by recirculation of hot combustion products. The geometry of the rectangular confinement and an off-center positioning of the jet nozzle were chosen to resemble one burner nozzle of a FLOX®-based combustor. The off-center jet arrangement caused the formation of a pronounced lateral recirculation zone similar to the one in previously investigated FLOX®-combustors (Lückerath et al., 2007. “FLOX® Combustion at High Pressure with Different Fuel Compositions,” ASME J. Eng. Gas Turbines Power, 130(1), pp. 011505; Lammel et al., 2010. “FLOX® Combustion at High Power Density and High Flame Temperatures,” ASME J. Eng. Gas Turbines Power, 132(12), p. 121503ff). The analysis was accomplished by different laser measurement techniques. Flame structures were visualized by OH* chemiluminescence imaging and planar laser-induced fluorescence of the OH radical. Laser Raman scattering was used to determine concentrations of the major species and the temperature. Velocity fields were measured with particle image velocimetry. Results of measurements in two confined jet flames are shown. The mixing of fresh gas with recirculating combustion products and the stabilization of the methane flame are discussed in detail. The presented findings deliver important information for the understanding of confined jet flames operated with different fuels. The obtained data sets can be used for the validation of numerical simulations as well.

References

References
1.
Krebs
,
W.
,
Hellat
,
J.
, and
Eroglu
,
A.
, 2003, “
Technische Verbrennungssysteme
Stationäre Gasturbinen
,
C.
Lechner
and
J.
Seume
, eds.,
Springer-Verlag
,
New York
.
2.
Correa
,
S. M.
, 1992, “
A Review of NOx Formation Under Gas-Turbine Combustion Conditions
,”
Combust. Sci. Technol.
,
87
, pp.
329
362
.
3.
Lefebvre
,
A. H.
, 1999,
Gas Turbine Combustion.
Taylor & Francis
,
London
.
4.
Dowling
,
A. P.
, and
Hubbard
,
S.
, 2000, “
Instability in Lean Premixed Combustors
,”
Proc. Inst. Mech. Eng.
,
214
, pp.
317
332
.
5.
Candel
,
S.
, 2002, “
Combustion Dynamics and Control: Progress and Challenges
,”
Proc. Combust. Inst.
,
29
, pp.
1
28
.
7.
Kröner
,
M.
,
Fritz
,
J.
, and
Sattelmayer
,
T.
, 2002, “
Flashback Limits for Combustion Induced Vortex Breakdown in a Swirl Burner
,” ASME Paper No. GT2002-30075.
8.
FLOX® is a registered trademark of WS Wärmeprozesstechnik GmbH, Renningen, Germany.
9.
Lückerath
,
R.
,
Meier
,
W.
, and
Aigner
,
M.
, 2008, “
FLOX® Combustion at High Pressure With Different Fuel Compositions
,”
ASME J. Eng. Gas Turbines Power
,
130
(
1
), pp.
011505
.
10.
Schütz
,
H.
,
Lückerath
,
R.
,
Noll
,
B.
, and
Aigner
,
M.
, 2007, “
Complex Chemistry Simulation of FLOX®: Flameless Oxidiation Combustion
,”
Clean Air International Journal on Energy for a Clean Environment
,
8
(
3
), p.
239ff
.
11.
Schütz
,
H.
,
Lückerath
,
R.
,
Kretschmer
,
T.
,
Noll
,
B.
, and
Aigner
,
M.
, 2008, “
Analysis of the Pollutant Formation in the FLOX® Combustion
,”
ASME J. Eng. Gas Turbines Power
,
130
(
1
), pp.
011503
.
12.
Wünning
,
J. A.
, and
Wünning
,
J. G.
, 1992, “
Burners for Flameless Oxidation With Low NOx Formation Even at Maximum Air Preheat
,”
Gaswärme International
41
(
10
), pp.
438
444
.
13.
Wünning
,
J. A.
, and
Wünning
,
J. G.
, 1997, “
Flameless Oxidation to Reduce Thermal NO-Formation
,”
Prog. Energy Combust. Sci.
,
23
, pp.
81
94
.
14.
Cavaliere
,
A.
, and
Joannon
,
M.
, 2004, “
Mild Combustion
,”
Prog. Energy Combust. Sci.
,
30
, pp.
329
366
.
15.
Bobba
,
M. K.
,
Gopalakrishnan
,
P.
,
Seitzman
,
J. M.
, and
Zinn
,
B. T.
, 2006, “
Characteristics of Combustion Processes in a Stagnation Point Reverse Flow Combustor
,” ASME Paper No. GT2006-91217.
16.
Lammel
,
O.
,
Schütz
,
H.
,
Schmitz
,
G.
,
Lückerath
,
R.
,
Stöhr
,
M.
,
Noll
,
B.
,
Aigner
,
M.
,
Hase
,
M.
, and
Krebs
,
W.
, 2010, “
FLOX® Combustion at High Power Density and High Flame Temperatures
,”
ASME J. Eng. Gas Turbines Power
,
132
(
12
), p.
121503ff
.
17.
Di Domenico
,
M.
,
Gerlinger
,
P.
, and
Noll
,
B.
, 2011, “
Numerical Simulations of Confined, Turbulent, Lean, Premixed Flames Using A Detailed Chemistry Combustion Model
,” ASME Paper No. GT2011-45520.
18.
Leister Process Technologies, Kaegiswil, Switzerland. URL: http://www.leister.comhttp://www.leister.com (accessed November 05, 2010).
19.
Sulzer AG, Winterthur, Switzerland. URL: http://www.sulzer.comhttp://www.sulzer.com (accessed November 05, 2010).
20.
Dandy
,
D. S.
, and
Vosen
,
S. R.
, 1992, “
Numerical and Experimental Studies of Hydroxyl Radical Chemoluminescence in Methane Air Flames
, ”
Combust. Sci. Technol.
,
82
, pp.
131
150
.
21.
Lee
,
J. G.
, and
Santavicca
,
D. A.
, 2003, “
Experimental Diagnostics for the Study of Combustion Instabilities in Lean Premixed Combustors
,”
J. Propul. Power
,
19
, pp.
735
750
.
22.
Hardalupas
,
Y.
, and
Orain
,
M.
, 2004, “
Local Measurements of the Time-Dependent Heat Release Rate and Equivalence Ratio Using Chemiluminescent Emission from a Flame
Combust. Flame
,
139
, pp.
188
207
.
23.
Dixon-Lewis
,
G.
, 1990, “
Structure of Laminar Flames
,”
Proc. Combust. Inst.
,
23
(
1
), pp.
305
324
.
24.
Barlow
,
R. S.
,
Dibble
,
R. W.
,
Chen
,
J.-Y.
, and
Lucht
,
R. P.
, 1990, “
Effect of Damköhler Number on Superequilibrium OH Concentration in Turbulent Nonpremixed Jet Flames
,”
Combust. Flame
,
82
, pp.
235
251
.
25.
Morley
,
C.
, and
Gaseq
,
A.
, “
Chemical Equilibrium Program for Windows
,” Version 0.79b, URL: http://www.gaseq.co.ukhttp://www.gaseq.co.uk (accessed November 10, 2010).
26.
Meier
,
W.
,
Duan
,
X. R.
, and
Weigand
,
P.
, 2006, “
Investigations of Swirl Flames in a Gas Turbine Model Combustor II. Turbulence-Chemistry Interactions
,”
Combust. Flame
,
144
, pp.
225
236
.
27.
Stopper
,
U.
,
Aigner
,
M.
,
Ax
,
H.
,
Meier
,
W.
,
Sadanandan
,
R.
,
Stöhr
,
M.
, and
Bonaldo
,
A.
, 2010, “
D-LIF and 1D-Raman Measurements of Flow Field, Composition and Temperature in Premixed Gas Turbine Flames
,”
Exp. Therm. Fluid Sci.
,
34
, pp.
396
403
.
You do not currently have access to this content.