An experimental analysis of a realistic engine cooling scheme was performed on a test article replicating a slot injection and an effusion array with a central large dilution hole. A test section consists of a rectangular cross-section duct with a flat plate comprised of 270 effusion holes arranged in 29 staggered rows (D = 1.65 mm, Sx/D = 7.6, Sy/D = 6, L/D = 5.5, α = 30 deg) and a dilution hole (D = 18.75 mm) located at the 14th row. Both effusion and dilution holes are fed by a channel replicating a combustor annulus, which allows to control of cold gas side cross-flow parameters, especially in terms of Reynolds number of both annulus and effusion holes. Upstream the first row, a 6 mm high slot ensures the protection of the very first region of the liner. In order to simulate the combustor flowpath, a backward facing step was installed upstream the slot to generate a large recirculating area. Adiabatic effectiveness, heat transfer coefficient and net heat flux reduction were evaluated and compared with non- recirculating experiments. Measurements were performed by means of a steady-state Thermochromic liquid crystals (TLC) technique with a thin Inconel heating foil for the heat transfer measurements. A data reduction procedure based on a finite element approach has been developed to take into account the non uniform heat generation and conduction due to the large amount of holes. Experiments were carried out considering the combined effects of slot, effusion and dilution holes. Three different effusion blowing ratios (BR = 3-5-7) are investigated, keeping constant the slot flow parameters (BR = 1.3). Results highlight that the presence of the step leads to a general reduction of effectiveness while does not have effects on the heat transfer coefficient.

References

References
1.
Lefebvre
,
A. H.
, 1998,
Gas Turbine Combustion
,
Taylor & Francis
,
London, UK
.
2.
Ballal
,
D.
, and
Zelina
,
J.
, 2004, “
Progress in Aeroengine Technology (1939-2003)
,”
J. Aircr.
,
41
, pp.
43
50
.
3.
Andrews
,
G. E.
,
Asere
,
A. A.
,
Gupta
,
M. L.
,
Mkpadi
,
M. C.
, and
Tirmahi
,
A.
, 1990, “
Full Coverage Discrete Hole Film Cooling: The Influence of the Number of Holes and Pressure Loss
,” ASME Paper No. 90-GT-61.
4.
Andrews
,
G. E.
,
Bazdidi-Tehrani
,
F.
,
Hussain
,
C. I.
, and
Pearson
,
J. P.
, 1991, “
Small Diameter Film Cooling Hole Heat Transfer: The Influence of Hole Length
,” ASME Paper No. 91-GT-344.
5.
Andrews
,
G. E.
,
Khalifa
,
I. M.
,
Asere
,
A. A.
, and
Bazdidi-Tehrani
,
F.
, 1995, “
Full Coverage Effusion Film Cooling With Inclined Holes
,” ASME Paper No. 95-GT-274.
6.
Harrington
,
M. K.
,
McWaters
,
M. A.
,
Bogard
,
D. G.
,
Lemmon
,
C. A.
, and
Thole
,
K. A.
, 2001, “
Full-Coverage Film Cooling With Short Normal Injection Holes
,”
ASME J. Turbomach.
,
123
, pp.
798
805
.
7.
Scrittore
,
J. J.
,
Thole
,
K. A.
, and
Burd
,
S.
, 2005. “
Experimental Characterization of Film-Cooling Effectiveness Near Combustor Dilution Holes
,” ASME Paper No. GT2005-68704.
8.
Scrittore
,
J. J.
,
Thole
,
K. A.
, and
Burd
,
S.
, 2006, “
Investigation of Velocity Profiles for Effusion Cooling of a Combustor Liner
,” ASME Paper No. GT2006-90532.
9.
Metzger
,
D.
,
Takeuchi
,
D.
, and
Kuenstler
,
P.
, 1973, “
Effectiveness and Heat Transfer with Full-Coverage Film Cooling
,”
ASME J. Eng. Power
,
95
, pp.
180
184
.
10.
Crawford
,
M. E.
,
Kays
,
W. M.
, and
Moffat
,
R. J.
, 1980, “
Full-Coverage Film Cooling—Part 1
,”
J. Eng. Power
,
102
, pp.
1000
1005
.
11.
Martinez-Botas
,
R. F.
, and
Yuen
,
C. H. N.
, 2000, “
Measurement of Local Heat Transfer Coefficient and Film Cooling Effectiveness Through Discrete Holes
,” ASME Paper No. 2000-GT-243.
12.
Kelly
,
G. B.
, and
Bogard
,
D. G.
, 2003, “
An Investigation of the Heat Transfer for Full Coverage Film Cooling
,” ASME Paper No. GT2003-38716.
13.
Ceccherini
,
A.
,
Facchini
,
B.
,
Tarchi
,
L.
,
Toni
,
L.
, and
Coutandin
,
D.
, 2009, “
Combined Effect of Slot Injection, Effusion Array and Dilution Hole on the Cooling Performance of a Real Combustor Liner
,” ASME Paper No. GT2009-60047.
14.
Facchini
,
B.
,
Maiuolo
,
F.
,
Tarchi
,
L.
, and
Coutadin
,
D.
, 2010, “
Combined Effect of Slot Injection, Effusion Array and Dilution Hole on the Heat Transfer Coefficient of a Real Combustor Liner—Part 1 Experimental Analysis
,” ASME Paper No. GT2010-22936.
15.
Patil
,
S.
,
Tafti
,
S. A. D.
,
Ekkad
,
S.
,
Kim
,
Y.
,
Dutta
,
P.
,
Moon
,
H.-K.
, and
Srinivasan
,
R.
, 2009, “
Experimental and Numerical Investigation of Convective Heat Transfer in a Gas Turbine Can Combustor
,” ASME Paper No. GT2009-59377.
16.
Sedalor
,
T.
,
Patil
,
S.
,
Ekkad
,
S.
,
Tafti
,
D.
,
Kim
,
Y.
,
Moon
,
H.-K.
, and
Srinivasan
,
R.
, 2010, “
Study of Flow and Convective Heat Transfer in a Simulated Scaled Up Low Emission Annular Combustor
,” ASME Paper No. GT2010-22986.
17.
Armaly
,
B. F.
,
Durst
,
F.
,
Pereira
,
J. C. F.
, and
Schonung
,
B.
, 1983, “
Experimental and Theoretical Investigation of Backward-Step Facing Flow
,”
J. Fluid Mech.
,
127
, pp.
473
496
.
18.
Lee
,
T.
, and
Mateescu
,
D.
, 1998, “
Experimental and Numerical Investigation of 2-D Backward-Facing Step Flow
,”
J. Fluids Struct.
,
12
, pp.
703
716
.
19.
Shisnova
,
E.
,
Roganova
,
P.
,
Grabarnika
,
S.
, and
Zabolotskya
,
V.
, 1988, “
Heat Transfer in the Recirculating Region Formed by a Backward-Facing Step
,”
Int. J. Heat Mass Transfer
,
31
, pp.
1557
1562
.
20.
Vogel
,
J.
, and
Eaton
,
J.
, 1985, “
Combined Heat Transfer and Fluid Dynamic Measurements Downstream of a Backward- Facing Step
,”
Int. J. Heat Mass Transfer
,
107
, pp.
922
929
.
21.
Pozarlik
,
A.
,
Panara
,
D.
,
Kok
,
J.
, and
van der Meer
,
T.
, 2008, “
Heat Transfer in a Recirculation Zone at Steady-State and Oscillating Conditions—The Back Facing Step Test Case
,”
5th European Thermal-Sciences Conference
,
The Netherlands
, 2008.
22.
Wilfert
,
G.
,
Sieber
,
J.
,
Rolt
,
A.
,
Baker
,
N.
,
Touyeras
,
A.
, and
Colantuoni
,
S.
, 2007, “
New Environmental Friendly Aero Engine Core Concepts
,”
Proceedings of the 18th ISABE conference
, Paper No. ISABE-2007-1120.
23.
Roach
,
P. E.
, 1987, “
The Generation of Nearly Isotropic Turbulence by Means of Grids
,”
Heat Fluid Flow
,
8
(
2
), pp.
83
92
.
24.
ASME
, 1985, “
Measurement Uncertainty
,”
Instrument and Apparatus, Performance Test Code
, Vol.
ANSI/ASME PTC 19.1-1985
,
ASME
,
New York
.
25.
Kline
,
S. J.
, and
McClintock
,
F. A.
, 1953, “
Describing Uncertainties in Single Sample Experiments
,”
Mech. Eng.
,
75
, pp.
3
8
.
26.
Sen
,
B.
,
Schmidt
,
D. L.
, and
Bogard
,
D. G.
, 1996, “
Film Cooling With Compound Angle Holes: Heat Transfer
,”
ASME J. Turbomach.
,
118
, pp.
800
806
.
27.
Gritsch
,
M.
,
Schulz
,
A.
, and
Wittig
,
S.
, 2000, “
Film-Cooling Holes With Expanded Exits: Near-Hole Heat Transfer Coefficients
,”
Int. J. Heat Fluid Flow
,
21
, pp.
146
155
.
28.
Christophel
,
J. R.
,
Thole
,
K. A.
, and
Cunha
,
F. J.
, 2005, “
Cooling the Tip of a Turbine Blade Using Pressure Side Holes-Part Ii: Heat Transfer Measurements
,” ASME Paper No. 2004-GT-53254.
29.
Piggush
,
J. D.
, and
Simon
,
T. W.
, 2007, “
Measurements of Net Change in Heat Flux as a Result of Leakage and Steps on the Contoured Endwall of a Gas Turbine First Stage Nozzle
,”
Appl. Therm. Eng.
,
27
, pp.
722
730
.
You do not currently have access to this content.