Jet fuels currently in use in the aviation industry are exclusively kerosene-based. However, potential problems regarding security of supply, climate change, and increasing cost are becoming more significant, exacerbated by the rapidly growing demand from the aviation sector. Biofuels are considered one of the most suitable alternatives to petrochemical-based fuels in the aviation industry in the short to medium term, since blends of biofuel and kerosene provide a good balance of properties currently required from an aviation fuel. Experimental studies at a variety of stoichiometries using a flat flame burner with kerosene and kerosene/biofuel blends have been performed with product analysis by gas sampling and laser-induced fluorescence detection of OH, CO, and CO2. These studies have been complemented by modeling using the PREMIX module of Chemkin to provide insights into and to validate combined models describing the oxidation chemistry of surrogate fuels depicting kerosene, fatty acid methyl ester biofuels, and Fischer-Tropsch derived fuels. Sensitivity analysis has identified important reactions within these schemes, which, where appropriate, have been investigated by molecular modeling techniques available within Gaussian 03.

References

References
1.
Dooley
,
S.
,
Curran
,
H.
, and
Simmie
,
J. M.
, 2008, “
Autoignition Measurements and a Validated Kinetic Model for the Biodiesel Surrogate, Methyl Butanoate
,”
Combust. Flame
,
153
, pp.
2
32
.
2.
Graboski
,
M. S.
, and
McCormick
,
R. L.
, 1998, “
Combustion of Fat and Vegetable Oil Derived Fuels in Diesel Engines
,”
Prog. Energy Combust. Sci.
,
24
, pp.
125
164
.
3.
Mackie
,
J. C.
, and
Doolan
,
K. R. B.
, 1984, “
High Temperature Kinetics of the Thermal Decomposition of Acetic Acid and Its Product
,”
Int. J. Chem. Kinet.
,
16
, pp.
525
541
.
4.
Doolan
,
K. R.
,
Mackie
,
J. C.
, and
Reid
,
C. R.
, 1986, “
High Temperature Kinetics of the Thermal Decomposition of the Lower Alkanoic Acids
,”
Int. J. Chem. Kinet.
,
18
, pp.
575
596
.
5.
Fisher
,
E. M.
,
Pitz
,
W. J.
,
Curran
,
H. J.
, and
Westbrook
,
C. K.
, 2000, “
Detailed Chemical Kinetic Mechanisms for Combustion of Oxygenated Fuels
,”
Proc. Combust. Inst.
,
28
, pp.
1579
1586
.
6.
Gail
,
S.
,
Thomson
,
M. J.
,
Sarathy
,
S. M.
,
Syed
,
S. A.
,
Dagaut
,
P.
,
Diévart
,
P.
,
Marchese
,
A. J.
, and
Dryer
,
F. L.
, 2007, “
A Wide-Ranging Kinetic Modeling Study of Methyl Butanoate Combustion
,”
Proc. Combust. Inst.
,
31
, pp.
305
311
.
7.
Metcalfe
,
W. K.
,
Dooley
,
S.
,
Curran
,
H. J.
,
Simmie
,
J. M.
,
El-Nahas
,
A. M.
, and
Navarro
,
M. V.
, 2007, “
Experimental and Modelling Study of C5H10O2 Ethyl and Methyl Esters
,”
J. Phys. Chem. A
,
111
, pp.
4001
4014
.
8.
El-Nahas
,
A. M.
,
Navarro
,
M. V.
,
Simmie
,
J. M.
,
Bozzelli
,
J. W.
,
Curran
,
H. J.
,
Dooley
,
S.
, and
Metcalfe
,
W.
, 2007, “
Enthalpies of Formation, Bond Dissociation Energies and Reaction Paths for the Decomposition of Model Biofuels: Ethyl Propanoate and Methyl Butanoate
,”
J. Phys. Chem. A
,
111
, pp.
3727
3739
.
9.
Huynh
,
L. K.
, and
Violi
,
A.
, 2008, “
Thermal Decomposition of Methyl Butanoate: Ab Initio Study of a Biodiesel Fuel Surrogate
,”
J. Org. Chem.
,
73
, pp.
94
101
.
10.
Herbinet
,
O.
,
Pitz
,
W. J.
, and
Westbrook
,
C. K.
, 2008, “
Detailed Chemical Kinetic Oxidation Mechanism for a Biodiesel Surrogate
,”
Combust. Flame
,
154
, pp.
507
528
.
11.
Dagaut
,
P.
, and
Gaïl
,
S.
, 2007, “
Chemical Kinetic Study of the Effect of a Biofuel Additive on Jet-A1 Combustion
J. Phys. Chem.
,
111
, pp.
3992
4000
.
12.
Dagaut
,
P.
,
Gaïl
,
S.
, and
Sahasrabudhe
,
M.
, 2007, “
Rapeseed Oil Methyl Ester Oxidation Over Extended Ranges of Pressure, Temperature, and Equivalence Ratio: Experimental and Modelling Kinetic Study
,”
Proc. Combust. Inst.
,
31
, pp.
2955
2961
.
13.
Catalanotti
,
E
,
Hughes
,
K. J.
,
Pourkashanian
,
M.
,
Uryga-Bugajska
,
I.
, and
Williams
,
A.
, 2008, “
Development of a High Temperature Oxidation Mechanism for Bio-Aviation Fuels
,”
Proc. ASME Int. Mech. Eng. Congr. Expo.
,
3
, pp.
321
330
.
15.
Baulch
,
D. L.
,
Bowman
,
C. T.
,
Cobos
,
C. J.
,
Cox
,
R. A.
,
Just
,
Th.
,
Kerr
,
J. A.
,
Pilling
,
M. J.
,
Stocker
,
D.
,
Troe
,
J.
,
Tsang
,
W.
,
Walker
,
R. W.
, and
Warnatz
,
J.
, 2005, “
Evaluated Kinetic Data for Combustion Modeling: Supplement II
,”
J. Phys. Chem. Ref. Data
,
34
, pp.
757
1397
.
16.
Kyne
,
A.
, 2001, “
Experimental and Theoretical Investigation of the Oxidation of Kerosene
,” Ph.D. thesis, University of Leeds, Leeds, UK.
17.
Smith
,
G. P.
,
Golden
,
D. M.
,
Frenklach
,
M.
,
Moriarty
,
N. W.
,
Eiteneer
,
B.
,
Goldenberg
,
M.
,
Bowman
,
C. T.
,
Hanson
,
R. K.
,
Song
,
S.
,
Gardiner
,
W. C.
, Jr.
,
Lissianski
,
V. V.
,
Qin
,
Z.
, 2010, “
GRI-Mech Home Page
,” http://www.me.berkeley.edu/gri_mech/http://www.me.berkeley.edu/gri_mech/
18.
Frisch
,
M. J.
,
Trucks
,
G. W.
,
Schlegel
,
H. B.
,
et al.
, 2004,
Gaussian 03, Revision C. 02
,
Gaussian, Inc.
,
Wallingford, CT
.
19.
Sholl
,
D. S.
, and
Stecke
,
J. A.
, 2009,
Density Functional Theory: A Practical Introduction
,
Wiley
,
New York
,
p.
238
.
20.
Becke
,
A. D.
, 1993, “
Density-Functional Thermochemistry. III. The Role of Exact Exchange
,”
J. Chem. Phys.
,
98
, pp.
5648
5652
.
21.
Lee
,
C.
,
Yang
,
W.
, and
Parr
,
R. G.
, 1988, “
Development of the Colle-Salvetti Correlation-Energy Formula Into a Functional of the Electron Density
,”
Phys. Rev. B
,
37
, pp.
785
789
.
22.
Vosko
,
S. H.
,
Wilk
,
L.
, and
Nusair
,
M.
, 1980, “
Accurate Spin-Dependent Electron Liquid Correlation Energies for Local Spin Density Calculations: A Critical Analysis
,”
Can. J. Phys.
,
58
, pp.
1200
1211
.
23.
Stephens
,
P. J.
,
Devlin
,
F. J.
,
Chabalowski
,
C. F.
, and
Frisch
,
M. J.
, 1994, “
Ab Initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields
,”
J. Phys. Chem.
,
98
, pp.
11623
11627
.
24.
Zope
,
R. R.
, and
Dunlap
,
B. I.
, 2005, “
Accurate Molecular Energies by Extrapolation of Atomic Energies Using an Analytic Quantum Mechanical Model
,”
Phys. Rev. B
,
71
, p.
193104
.
25.
Andersson
,
M. P.
, and
Udval
,
P.
, 2005, “
New Scale Factors for Harmonic Vibrational Frequencies Using the B3LYP Density Functional Method With the Triple-zeta Basis Set 6-311+G(d,p)
,”
J. Phys. Chem. A
,
109
, pp.
2937
2941
.
26.
Pilling
,
M. J.
, and
Smith
,
I. W. M.
, 1987,
Modern Gas Kinetics: Theory, Experiment and Application
,
Blackwell Scientific
,
Oxford
.
27.
Motorola Inc., 2001, KHIMERA v3.1.
28.
Novoselov
,
K. P.
,
Shirabaikin
,
D. B.
,
Unanskii
,
S. Ya.
,
Vladimirov
,
A. S.
,
Minushev
,
A. Kh.
, and
Korkin
,
A. A.
, 2002, “
Software News and Updates. CHIMERA: A Software Tool for Reaction Rate Calculations and Kinetics and Thermodynamics Analysis
,”
J. Comput. Chem.
,
23
, pp.
1375
1389
.
29.
Gilbert
,
R. G.
, and
Smith
,
S. C.
, 1990,
Theory of Unimolecular and Recombination Reactions
,
Blackwell Scientific
,
Oxford
.
30.
Pilling
,
M. J.
, and
Robertson
,
S. H.
, 2003, “
Master Equation Models for Chemical Reactions of Importance in Combustion
,”
Annu. Rev. Phys. Chem.
,
54
, pp.
245
275
.
31.
Laidler
,
K.
, and
King
,
C.
, 1983, “
Development of Transition-State Theory
,”
J. Phys. Chem.
,
87
, pp.
2657
2664
.
32.
Ritter
,
E. R.
, and
Bozzelli
,
J. W.
, 1991, “
THERM: Thermodynamic Property Estimation for Gas Phase Radicals and Molecules
,”
Int. J. Chem. Kinet.
,
23
, pp.
767
778
.
33.
Benson
,
S.
, 1976,
Thermochemical Kinetics: Methods for the Estimation of Thermochemical Data and Rate Parameters
,
2nd ed.
,
Wiley
,
New York
.
34.
Hughes
,
K. J.
,
Tomlin
,
A. S.
,
Dupont
,
V. A.
, and
Pourkashanian
,
M.
, 2001, “
Experimental and Modelling Study of Sulphur and Nitrogen Doped Premixed Flames at Low Pressure
,”
Faraday Discuss.
,
119
, pp.
337
352
.
35.
Kee
,
R. J.
,
Rupley
,
F. M.
, and
Miller
,
J. A.
, 1991, “
CHEMKIN-2: A Fortran Chemical Kinetics Package for the Analysis of Gas-Phase Chemical Kinetics
,”
Sandia Laboratories
, Report No. 89-8009B.
36.
Berzins
,
M.
, and
Furzeland
,
R. M.
, 1985, “
A User’s Manual for SPRINT---A Versatile Software Package for Solving Systems of Algebraic, Ordinary and Partial Differential Equations
,” Report No. TNER 85.058,
Shell Research Limited, Thornton Research Centre
, Chester, UK.
You do not currently have access to this content.