In this paper, kernel principal component analysis (KPCA) is studied for fault detection and identification of the instruments in nuclear power plants. A KPCA model for fault isolation and identification is proposed by using the average sensor reconstruction errors. Based on this model, faults in multiple sensors can be isolated and identified simultaneously. Performance of the KPCA-based method is demonstrated with real NPP measurements.

References

References
1.
Chan
,
A. M. C.
, and
Ahluwalia
,
A. K.
, 1992, “
Feedwater Flow Measurement in U.S. Nuclear Power Generation Stations
,”
Electric Power Research Institute
, Report No. EPRI-TR-101388.
2.
Hines
,
J. W.
, and
Davis
,
E
, 2005, “
Lessons Learned From the U.S. Nuclear Power Plant On-Line Monitoring Programs
,”
Prog. Nucl. Energy
,
46
, pp.
176
189
.
3.
Isermann
,
R.
, 2006,
Fault-Diagnosis Systems: An Introduction from Fault Detection to Fault Tolerance
,
Springer
,
Berlin
.
4.
Chiang
,
L. H.
,
Russell
,
E. L.
, and
Braatz
,
R. D.
, 2001,
Fault Detection and Diagnosis in Industrial Systems
,
Springer
,
Berlin
.
5.
Ma
,
J.
, and
Jiang
,
J.
, 2009, “
Applications of Fault Diagnosis in Nuclear Power Plants: An Introductory Survey
,”
The 7th IFAC Symposium on Fault Detection, Supervision and Safety of Technical Processes
. Barcelona, Spain, June 30–July 03.
6.
Wise
,
B. M.
, and
Gallagher
,
N. B.
, 1996, “
The Process Chemometrics Approach to Process Monitoring and Fault Detection
,”
J. Process Control
,
6
, pp.
329
348
.
7.
Kramer
,
M. A.
, 1991, “
Nonlinear Principal Component Analysis Using Autoassociative Neural Networks
,”
AIChE J.
,
37
, pp.
233
243
.
8.
Dong
,
D.
, and
McAvoy
,
T. J.
, 1996, “
Nonlinear Principal Component Analysis—Based on Principal Curves and Neural Networks
,”
Comput. Chem. Eng.
,
30
, pp.
65
78
.
9.
Dunia
,
R.
,
Qin
,
S. J.
,
Edgar
,
T. F.
, and
McAvoy
,
T. J.
, 1996, “
Identification of Faulty Sensors Using Principal Component Analysis
,”
AIChE J.
,
42
, pp.
2797
2812
.
10.
Schölkopf
,
B.
,
Smola
,
A.
, and
Müller
,
K.-R.
, 1998, “
Nonlinear Component Analysis as a Kernel Eigenvalue Problem
,”
Neural Comput.
,
10
, pp.
1299
1319
.
11.
Aizerman
,
M.
,
Braverman
,
E.
, and
Rozonoer
,
L.
, 1964, “
Theoretical Foundations of the Potential Function Method in Pattern Recognition Learning,”
Autom. Remote Control
,
25
, pp.
821
837
.
12.
Lee
,
J.
,
Yoo
,
C.
,
Choi
,
S.
,
Vanrolleghem
,
P. A.
, and
Lee
,
I.
, 2004, “
Nonlinear Process Monitoring Using Kernel Principal Component Analysis
,”
Chem. Eng. Sci.
,
59
, pp.
223
234
.
13.
Choi
,
S.
,
Lee
,
C.
,
Lee
,
J.
,
Park
,
J.
, and
Lee
,
I.
, 2005, “
Fault Detection and Identification of Nonlinear Processes Based on Kernel PCA
,”
Chemom. Intell. Lab. Syst.
,
75
, pp.
55
67
.
14.
Schölkopf
,
B.
, and
Smola
,
A.
, 2002,
Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond
,
The MIT Press
,
Cambridge, MA
.
15.
Shaw-Taylor
,
J.
, and
Cristianini
,
N.
, 2004,
Kernel Methods for Pattern Analysis
,
Cambridge University Press
,
Cambridge, U.K
.
16.
Shi
,
H.
,
Liu
,
J.
, and
Zhang
,
Y.
, 2009, “
An Optimized Kernel Principal Component Analysis Algorithm for Fault Detection
,”
The 7th IFAC Symposium on Fault Detection, Supervision and Safety of Technical Processes
. Barcelona, Spain, June 30–July 3.
17.
Mika
,
S.
,
Schölkopf
,
B.
,
Smola
,
A.
,
Müller
,
K. R.
,
Scholz
,
M.
, and
Rätsch
,
G.
, 1999, “
Kernel PCA and De-Noising in Feature Spaces
,”
Advances in Neural Information Processing Systems 11
,
M.S.
Kearns
,
S. A.
Solla
, and
D. A.
Cohn
, eds.,
MIT Press
,
Cambridge, MA
, pp.
536
542
.
18.
Takahashi
,
T.
, and
Kurita
,
T.
, 2002, “
Robust De-Noising by Kernel PCA
,”
Artificial Neural Networks — ICANN 2002
,
J. R.
Dorronsoro
, ed.,
LNCS 2415, Springer-Verlag
,
London, UK
, pp.
739
744
.
You do not currently have access to this content.