Plasticity effects and crack-closure modeling of small fatigue cracks were used on a Ti-6Al-4V alloy to calculate fatigue lives under various constant-amplitude loading conditions (negative to positive stress ratios, R) on notched and un-notched specimens. Fatigue test data came from a high-cycle-fatigue study by the U.S. Air Force and a metallic materials properties handbook. A crack-closure model with a cyclic-plastic-zone-corrected effective stress-intensity factor range and equivalent-initial-flaw-sizes (EIFS) were used to calculate fatigue lives using only crack-growth-rate data. For un-notched specimens, EIFS values were 25-μm; while for notched specimens, the EIFS values ranged from 6 to 12 μm for positive stress ratios and 25-μm for R = −1 loading. Calculated fatigue lives under a wide-range of constant-amplitude loading conditions agreed fairly well with the test data from low- to high-cycle fatigue conditions.

References

References
1.
Pearson
,
S.
, 1975, “
Initiation of Fatigue Cracks in Commercial Aluminum Alloys and the Subsequent Propagation of Very Short Cracks
,”
Eng. Fract. Mech.
,
7
, pp.
235
247
.
2.
Kitagawa
,
H.
, and
Takahashi
,
S.
, 1976, “
Applicability of Fracture Mechanics to Very Small Cracks or the Behaviour in the Early Stages
,”
Proc. Second International Conference on Mechanical Behavior of Materials
,
Boston, MA
, pp.
627
631
.
3.
Zocher
,
H.
, ed., 1983, “
Behaviour of Short Cracks in Airframe Components
,”
AGARD Conf. Proc.
No. 328.
4.
Ritchie
,
R. O.
, and
Lankford
,
J.
, eds., 1986,
Small Fatigue Cracks
,
The Metallurgical Society, Inc.
,
Warrendale, PA
.
5.
Miller
,
K. J.
, and
de los Rios
,
E. R.
, eds., 1986, “
The Behaviour of Short Fatigue Cracks
,”
European Group on Fracture
, Publication No. 1.
6.
Ritchie
,
R. O.
, and
Lankford
,
J.
, 1986, “
Overview of the Small Crack Problem
,”
Small Fatigue Cracks
,
R. O.
Ritchie
and
J.
Lankford
, eds., The Metallurgical Society, Inc., Warrendale, PA, pp. 1–5.
7.
Newman
,
J. C.
, Jr.
, 1983, “
A Nonlinear Fracture Mechanics Approach to the Growth of Small Cracks
,”
Behaviour of Short Cracks in Airframe Components
,
Zocher
,
H.
, ed., AGARD Conf. Proc.
328
, pp.
6.1
6.26
.
8.
Newman
,
J. C.
, Jr.
,
Swain
,
M. H.
, and
Phillips
,
E. P.
, 1986, “
An Assessment of the Small-Crack Effect for 2024-T3 Aluminum Alloy
,”
Small Fatigue Cracks
, The Metallurgical Society, Inc., Warrendale, PA, pp.
427
452
.
9.
Newman
,
J. C.
, Jr.
, and
Edwards
,
P. R.
, 1988, “
Short-Crack Growth Behaviour in an Aluminum Alloy - an AGARD Cooperative Test Programme
,”
AGARD Conf. Proc.
R-732
, pp. 1–96.z
10.
Newman
,
J. C.
, Jr.
,
Phillips
,
E. P.
, and
Swain
,
M. H.
, 1997, “
Fatigue-Life Prediction Methodology using Small-Crack Theory
,” NASA Paper No. TM-110307.
11.
Newman
,
J. C.
Jr.
,
Phillips
,
E. P.
, and
Everett
,
R. A.
, Jr.
, 1999, “
Fatigue Analyses Under Constant- and Variable-Amplitude Loading using Small-Crack Theory
,” NASA Paper No. TM-209329.
12.
Newman
,
J. C.
, Jr.
,
Schneider
,
J.
,
Daniel
,
A.
, and
McKnight
,
D.
, 2005, “
Compression Pre-Cracking to Generate Near Threshold Fatigue-Crack-Growth Rates in Two Aluminum Alloys
,”
Int. J. Fatigue
,
27
, pp.
1432
1440
.
13.
Ruschau
,
J. J.
,
and
Newman
,
J. C.
, Jr.
, 2008, “
Compression Precracking to Generate Near Threshold Fatigue-Crack-Growth Rates in an Aluminum and Titanium Alloy
,”
J. ASTM International
,
5
(
7
), pp. 1–11.
14.
Yamada
,
Y.
, and
Newman
,
J. C.
, Jr.
, 2009, “
Crack Closure Under High Load-Ratio Conditions for Inconel-718 Near Threshold Conditions
,”
Eng. Fract. Mech.
,
76
, pp.
209
220
.
15.
Suresh
,
S.
, 1985, “
Crack Initiation in Cyclic Compression and Its Application
,”
Eng. Fract. Mech.
,
21
, pp.
453
463
.
16.
Pippan
,
R.
,
Plöchl
,
L.
,
Klanner
,
F.
, and
Stüwe
,
H. P.
, 1994, “
The Use of Fatigue Specimens Precracked in Compression for Measuring Threshold Values and Crack Growth
,”
J. Test. Eval.
,
22
, p.
98
.
17.
Gallagher
,
J. P.
, 2001, “
Improved High-Cycle Fatigue (HCF] Life Prediction
,” AFRL-ML-WP-TR-2001-4159.
18.
deLaneuville
,
R. E.
, and
Sheldon
,
J. W.
, 2001, “
Crack Growth
,” AFRL-ML-WP-TR-2001-4159, Appendix 3B, pp. 1–12.z
19.
Lenets
,
Y. N.
, 2001, “
Nucleation and Propagation of Small Cracks
,” AFRL-ML-WP-TR-2001-4159, Appendix 3C, pp. 1–14.
20.
Bellows
,
R.
, 2001, “
Effect of Specimen Geometry and Frequency on HCF Smooth Specimen Behavior
,” AFRL-ML-WP-TR-2001-4159, Appendix 3F, pp. 1–4.
21.
deLaneuville
,
R. E.
, and
Sheldon
,
J. W.
, 2001, “
Notch Fatigue
,” AFRL-ML-WP-TR-2001-4159, Appendix 3J, pp. 1–6.
22.
Metallic Materials Properties Development and Standardization, U.S. Department of Transportation, Federal Aviation Administration
, 2003, Washington, D.C., Paper No. DOT/FAA/AR-MMPDS-01.
23.
Garr
,
K. R.
, and
Hresko
,
G. C.
, 2000, “
A Size Effect on the Fatigue Crack Growth Rate Threshold of Alloy 718
,”
ASTM Spec. Tech. Publ.
,
1372
, pp.
155
174
.
24.
Newman
,
J. C.
, Jr.
, 1981, “
A Crack Closure Model for Predicting Fatigue Crack Growth Under Aircraft Spectrum Loading
,”
ASTM Spec. Tech. Publ.
,
748
, pp.
53
84
.
25.
Elber
,
W.
, 1971, “
The Significance of Fatigue Crack Closure
,”
ASTM Spec. Tech. Publ.
486
, pp.
230
242
.
26.
Newman
,
J. C.
, Jr.
, 1992, “
FASTRAN-II - A Fatigue Crack Growth Structural Analysis Program
,” Paper No. NASA TM 104159.
27.
Newman
,
J. C.
, Jr.
, 1992, “
Effects of Constraint on Crack Growth Under Aircraft Spectrum Loading
,”
Fatigue of Aircraft Materials
,
A.
Beukers
ed., Delft University Press, The Netherlands, pp.
83
109
.
28.
Newman
,
J. C.
Jr.
,
Ruschau
,
J. J.
, and
Hill
,
M. R.
, “
Improved Test Method for Very Low Fatigue-Crack-Growth-Rate Data
,”
Fatigue Fracture Eng. Mater. Struct
. (to be published).
29.
El
Haddad
,
M. H.
,
Dowling
,
N. E.
,
Topper
,
T. H.
, and
Smith
,
K. N.
, 1980, “
J-Integral Application for Short Fatigue Cracks at Notches
,”
Int. J. Fracture
,
16
, pp. 15–30.
30.
Hudak
,
S. J.
, Jr.
, and
Chan
,
K. S.
, 1986, “
In Search of a Driving Force to Characterize the Kinetics of Small Crack Growth
,”
Small Fatigue Cracks
,
R. O.
Ritchie
and
J.
Lankford
, eds.,
Metallurgical Society
,
Warrendale, PA
, pp.
379
405
.
31.
Rice
,
J. R.
, 1968, “
A Path Independent Integral and the Approximate Analysis of Strain Concentration by Notches and Cracks
,”
J. Appl. Mech.
,
35
, pp.
379
386
.
32.
Newman
,
J. C.
, Jr.
, 1992, “
Fracture Mechanics Parameters for Small Fatigue Cracks
,”
ASTM Spec. Tech. Publ.
1149
, pp.
6
28
.
33.
Lenets
,
Y. N.
,
Bellows
,
R.
, and
Merrick
,
H.
, 2000, “
Propagation Behavior of Naturally Initiated Cracks in Round Bars of Ti-6Al-4V
,”
Proc. 5th National Turbine High Cycle Fatigue Conference
, HCF’00.
34.
Lenets
,
Y. N.
,
Nelson
,
R.
, and
Merrick
,
H.
, 2002,”
Growth of Small Cracks at Different Stress Ratios
,”
Proc. 7th National Turbine Engine High Cycle Fatigue Conference
, HCF’02.
35.
Lanciotti
,
A.
, and
Galatolo
,
R.
, “
Short Crack Observations in Ti-6Al-4V under Constant Amplitude Loading
,”
AGARD Conf. Proc.
,
R-732
, pp.
10.1
10.7
.
You do not currently have access to this content.