Bifurcation analysis is performed on experimental data obtained from a simple setup comprising ducted laminar premixed conical flames in order to investigate the features of nonlinear thermoacoustic oscillations. It is observed that as the bifurcation parameter is varied, the system undergoes a series of bifurcations leading to characteristically different nonlinear oscillations. Through the application of nonlinear time series analysis to pressure and flame (CH* chemiluminescence) intensity time traces, these oscillations are characterized as periodic, aperiodic, or chaotic oscillations, and subsequently the nature of the obtained bifurcations is explained based on dynamical systems theory. Nonlinear interaction between the flames and the acoustic modes of the duct is clearly reflected in the high speed flame images acquired simultaneously with pressure time series.

References

References
1.
Zinn
,
B. T.
, and
Lieuwen
,
T. C.
, 2005,
“Combustion Instabilities: Basic Concepts,” Combustion Instabilities in Gas Turbine Engines: Operational Experience, Fundamental Mechanisms, and Modeling (Progress in Astronautics and Aeronautics)
,
AIAA, Reston, VA, Chapter I
, pp.
1
26
.
2.
Lieuwen
,
T. C.
, 2002, “
Experimental Investigation of Limit-Cycle Oscillations in an Unstable Gas Turbine Combustor
,”
J. Propul. Power
,
18
(
1
), pp.
61
67
.
3.
Schadow
K.
, and
Gutmark
,
E.
, 1992, “
Combustion Instability Related to Vortex Shedding in Dump Combustors and Their Passive Control
,”
Prog. Energy Combust. Sci.
,
18
(
2
), pp.
117
132
.
4.
Poinsot
,
T. J.
,
Trouve
,
A. C.
,
Veynante
,
D. P.
,
Candel
,
S. M.
, and
Esposito
,
E. J.
, 1987, “
Vortex-Driven Acoustically Coupled Combustion Instabilities
,”
J. Fluid Mech.
,
177
, pp.
265
292
.
5.
Candel
,
S.
, 2002, “
Combustion Dynamics and Control: Progress and Challenges
,”
Proc. Combust. Inst.
,
29
, pp.
1
12
.
6.
McManus
,
K.
,
Poinsot
,
T.
, and
Candel
,
S.
, 1993, “
A Review of Active Control of Combustion Instabilities
,”
Prog. Energy Combust. Sci.
,
19
(
1
), pp.
1
29
.
7.
Moeck
,
J. P.
,
Bothien
,
M. R.
,
Schimek
,
S.
,
Lacarelle
,
A.
, and
Paschereit
,
C. O.
, 2008,
“Subcritical Thermoacoustic Instabilities in a Premixed Combustor,”
Proceedings of the 14th AIAA/CEAS Aeroacoustics Conference (29th AIAA Aeroacoustics Conference), May, pp.
1
18
.
8.
Matveev
,
K. I.
, and
Culick
,
F. E. C.
, 2003, “
Limit-Cycle Properties of a Rijke Tube
,”
Technical Acoustics
,
12
, pp.
1
13
.
9.
Jahnke
,
C. C.
, and
Culick
,
F. E. C.
, 1994, “
An Application of Dynamical Systems Theory to Nonlinear Combustion Instabilities
,”
J. Propul. Power
,
10
(
4
), pp.
508
517
.
10.
Sterling
,
J. D.
, 1993, “
Nonlinear Analysis and Modelling of Combustion Instabilities in a Laboratory Combustor
,”
Combust. Sci. Technol.
,
89
(
4
), pp.
167
179
.
11.
Lei
,
S.
, and
Turan
,
A.
, 2009, “
Nonlinear/Chaotic Behaviour in Thermo-acoustic Instability
,”
Combust. Theory Modell.
,
13
(
3
), pp.
541
557
.
12.
Matsui
,
Y.
, 1981, “
An Experimental Study on Pyro-acoustic Amplification of Premixed Laminar Flames
,”
Combust. Flame
,
43
, pp.
199
209
.
13.
Noiray
,
N.
,
Durox
,
D.
,
Schuller
,
T.
, and
Candel
,
S.
, 2008, “
A Unified Framework for Nonlinear Combustion Instability Analysis Based on the Flame Describing Function
,”
J. Fluid Mech.
,
615
, pp.
139
167
.
14.
Nayfeh
,
A. H.
, and
Balachandran
,
B.
, 2004,
Applied Nonlinear Dynamics: Analytical, Computational, and Experimental Methods,
Wiley-VCH Verlag GmbH & Co.
KGaA, Weinheim, Germany.
15.
Strogatz
,
S. H.
, 2007,
Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering, Levant Books
, Kolkata, India.
16.
Moon
,
F. C.
, 2004,
Nonlinear Chaotic and Fractal Dynamics: An Introduction for Applied Scientists and Engineers
,
Wiley-VCH Verlag GmbH & Co.
KGaA, Weinheim, Germany.
17.
Abarbanel
,
H. D. I.
,
Brown
,
R.
,
Sidorowich
,
J. J.
, and
Tsimring
,
L. S.
, 1993, “
The Analysis of Observed Chaotic Data in Physical Systems
,”
Rev. Mod. Phys.
,
65
(
4
), pp.
167
192
.
18.
Kantz
,
H.
, and
Schreiber
,
T.
, 2003,
Nonlinear Time Series Analysis,
Cambridge University Press
,
Cambridge, England.
19.
Takens
,
F.
, 1981,
Dynamical Systems and Turbulence (Lecture Notes in Mathematics)
,
D.
Rand
and
L. S.
Young
, eds.,
Springer-Verlag
,
Berlin
, p.
366
.
20.
Abarbanel
,
H. D. I.
, 1996,
Analysis of Observed Chaotic Data
,
Springer-Verlag
,
New York.
21.
Hilborn
,
R. C.
, 2000,
Chaos and Nonlinear Dynamics: An Introduction for Scientists and Engineers
,
Oxford University Press
,
New York.
22.
Grassberger
,
P.
, and
Procaccia
,
I.
, 1983, “
Characterization of Strange Attractors
,”
Phys. Rev. Lett.
,
50
(
5
), pp.
346
349
.
23.
Kantz
,
H.
, 1994, “
A Robust Method to Estimate the Maximal Lyapunov Exponent of a Time Series
,”
Phys. Lett. A
,
185
, pp.
77
87
.
24.
Suresh
,
S.
, 1998,
Fatigue of Materials
,
Cambridge University Press
,
Cambridge, England.
25.
Kabiraj
,
L.
,
Saurabh
,
A.
,
Wahi
,
P.
, and
Sujith
,
R. I.
, 2010, “
Experimental Study of Thermoacoustic Instability in Ducted Premixed Flames: Periodic, Quasi-Periodic and Chaotic Oscillations
,”
Summer School and Workshop on Non-Normal and Nonlinear Effects in Aero- and Thermoacoustics
, May.
You do not currently have access to this content.