The isentropic flow equations relating the thermodynamic pressures, temperatures, and densities to their stagnation properties are solved in terms of the area expansion and specific heat ratios. These fundamental thermofluid relations are inverted asymptotically and presented to arbitrary order. Both subsonic and supersonic branches of the possible solutions are systematically identified and exacted. Furthermore, for each branch of solutions, two types of recursive approximations are provided: a property-specific formulation and a more general, universal representation that encompasses all three properties under consideration. In the case of the subsonic branch, the asymptotic series expansion is shown to be recoverable from Bürmann’s theorem of classical analysis. Bosley’s technique is then applied to verify the theoretical truncation order in each approximation. The final expressions enable us to estimate the pressure, temperature, and density for arbitrary area expansion and specific heat ratios with no intermediate Mach number calculation or iteration. The analytical framework is described in sufficient detail to facilitate its portability to other nonlinear and highly transcendental relations where closed-form solutions may be desirable.

References

1.
Sutton
,
G. P.
, 1992,
Rocket Propulsion Elements
, 6th ed.,
Wiley
,
New York
.
2.
Anderson
,
J. D.
, 2003,
Modern Compressible Flow With Historical Perspective
, 3rd ed.,
McGraw-Hill
,
New York
.
3.
Moran
,
M. J.
, and
Shapiro
,
H. N.
, 2004,
Fundamentals of Engineering Thermodynamics
, 5th ed.,
Wiley
,
New York
.
4.
Çengel
,
Y. A.
, and
Boles
,
M. A.
, 2002,
Thermodynamics: An Engineering Approach
, 4th ed.,
McGraw-Hill
,
New York
.
5.
Stodola
,
A.
, 1903,
Steam Turbines
,
Springer-Verlag
,
Berlin
.
6.
Majdalani
,
J.
, and
Maicke
,
B. A.
, 2011, “
Explicit Inversion of Stodola’s Area-Mach Number Equation
,”
J. Heat Trans.
,
133
(
7
), p.
071702
.
7.
Haselbacher
,
A.
, 2005, “
A WENO Reconstruction Algorithm for Unstructured Grids Based on Explicit Stencil Construction
,”
Paper No. AIAA 2005-0879
,
Reno
,
NV
.
8.
Najjar
,
F.
,
Ferry
,
J.
,
Haselbacher
,
A.
, and
Balachandar
,
S.
, 2006, “
Simulations of Solid-Propellant Rockets: Effects of Aluminum Droplet Size Distribution
,”
J. Spacecraft Rockets
,
43
(
6
), pp.
1258
1270
.
9.
Thakre
,
P.
, and
Yang
,
V.
, 2008, “
Chemical Erosion of Carbon-Carbon/Graphite Nozzles in Solid-Propellant Rocket Motors
,”
J. Propul. Power
,
24
(
4
), pp.
822
833
.
10.
Zhang
,
J.
,
Jackson
,
T. L.
,
Najjar
,
F. M.
, and
Buckmaster
,
J.
, 2009, “
High-Fidelity Multiphysics Simulations of Erosion in SRM Nozzles
,”
Paper No. AIAA 2009-5499
,
Denver
,
CO
.
11.
Haselbacher
,
A.
,
Najjar
,
F.
,
Massa
,
L.
, and
Moser
,
R.
, 2010, “
Slow-Time Acceleration for Modeling Multiple-Time-Scale Problems
,”
J. Comput. Phys.
,
229
(
2
), pp.
325
342
.
12.
Bosley
,
D. L.
, 1996, “
A Technique for the Numerical Verification of Asymptotic Expansions
,”
SIAM Rev.
,
38
(
1
), pp.
128
135
.
13.
Whittaker
,
E. T.
, and
Watson
,
G. N.
, 1927,
A Course of Modern Analysis
, 4th ed.,
Cambridge University Press
,
Cambridge
.
14.
Majdalani
,
J.
, and
Roh
,
T.
, 2001, “
Vorticity Dynamics in Isobarically Closed Porous Channels. Part II: Space-Reductive Perturbations
,”
J. Propul. Power
,
17
(
2
), pp.
363
370
.
15.
Majdalani
,
J.
, 2001, “
Vorticity Dynamics in Isobarically Closed Porous Channels. Part I: Standard Perturbations
,”
J. Propul. Power
,
17
(
2
), pp.
355
362
.
16.
Majdalani
,
J.
, 2003, “
Reply to Robert L. Glick’s Comment: Physicality of Core Flow Models in Rocket Motors
,”
J. Propul. Power
,
19
(
1
), pp.
156
159
.
17.
Saad
,
T.
,
Sams
,
O.
, and
Majdalani
,
J.
, 2006, “
Rotational Flow in Tapered Slab Rocket Motors
,”
Phys. Fluids
,
18
(
1
), p.
103601
.
18.
Sams
,
O.
,
Majdalani
,
J.
, and
Saad
,
T.
, 2007, “
Mean Flow Approximations for Solid Rocket Motors With Tapered Walls
,”
J. Propul. Power
,
23
(
2
), pp.
445
456
.
19.
Kurdyumov
,
V.
, 2006, “
Steady Flows in the Slender, Noncircular, Combustion Chambers of Solid Propellants Rockets
,”
AIAA J.
,
44
(
12
), pp.
2979
2986
.
20.
Zhou
,
C.
, and
Majdalani
,
J.
, 2002, “
Improved Mean Flow Solution for Slab Rocket Motors With Regressing Walls
,”
J. Propul. Power
,
18
(
3
), pp.
703
711
.
21.
Majdalani
,
J.
,
Vyas
,
A.
, and
Flandro
,
G.
, 2002, “
Higher Mean-Flow Approximation for a Solid Rocket Motor With Radially Regressing Walls
,”
AIAA J.
,
40
(
9
), pp.
1780
1788
.
22.
Dauenhauer
,
E.
, and
Majdalani
,
J.
, 2003, “
Exact Self-Similarity Solution of the Navier-Stokes Equations for a Porous Channel with Orthogonally Moving Walls
,”
Phys. Fluids
,
15
(
6
), pp.
1485
1495
.
23.
Xu
,
H.
,
Lin
,
Z.
,
Liao
,
S.
,
Wu
,
J.
, and
Majdalani
,
J.
, 2010, “
Homotopy Based Solutions of the Navier-Stokes Equations for a Porous Channel With Orthogonally Moving Walls
,”
Phys. Fluids
,
22
(
5
), p.
053601
.
24.
Majdalani
,
J.
, 2007, “
Vortex Injection Hybrid Rockets
,”,
Fundamentals of Hybrid Rocket Combustion and Propulsion (AIAA Progress in Astronautics and Aeronautics)
,
K.
Kuo
and
M. J.
Chiaverini
, eds., Washington, DC, pp.
247
276
.
25.
Majdalani
,
J.
, and
Chiaverini
,
M. J.
, 2009, “
On Steady Rotational Cyclonic Flows: The Viscous Bidirectional Vortex
,”
Phys. Fluids
,
21
(
10
), p.
103603
.
26.
Batterson
,
J. W.
, and
Majdalani
,
J.
, 2010, “
Sidewall Boundary Layers of the Bidirectional Vortex
,”
J. Propul. Power
,
26
(
1
), pp.
102
112
.
27.
Majdalani
,
J.
, 2009, “
Multiple Asymptotic Solutions for Axially Travelling Waves in Porous Channels
,”
J. Fluid Mech.
,
636
(
1
), pp.
59
89
.
28.
Majdalani
,
J.
, and
Flandro
,
G.
, 2002, “
The Oscillatory Pipe Flow With Arbitrary Wall Injection
,”
Proc. R. Soc. London, Ser. A
,
458
(
2023
), pp.
1621
1651
.
29.
Majdalani
,
J.
, and
Roh
,
T.
, 2000, “
The Oscillatory Channel Flow With Large Wall Injection
,”
Proc. R. Soc. London, Ser. A
,
456
(
1999
), pp.
1625
1657
.
30.
Maicke
,
B.
, and
Majdalani
,
J.
, 2008, “
On the Rotational Compressible Taylor Flow in Injection-Driven Porous Chambers
,”
J. Fluid Mech.
,
603
(
1
), pp.
391
411
.
31.
Majdalani
,
J.
, 2007, “
On Steady Rotational High Speed Flows: The Compressible Taylor-Culick Profile
,”
Proc. R. Soc. London, Ser. A
,
463
(
2077
), pp.
131
162
.
32.
Abramowitz
,
M.
, and
Stegun
,
I. A.
, 1964,
Handbook of Mathematical Functions
,
National Bureau of Standards
,
New York
.
You do not currently have access to this content.