Accurate chemistry models are required to predict the combustion behavior of different fuels, such as synthetic gaseous fuels and liquid jet fuels. A detailed reaction mechanism contains chemistry for all the molecular components in the fuel or its surrogates. Validation studies that compare model predictions with the data from fundamental combustion experiments under well-defined conditions are least affected by the effect of transport on chemistry. Therefore they are the most reliable means for determining a reaction mechanism’s predictive capabilities. Following extensive validation studies and analysis of detailed reaction mechanisms for a wide range of hydrocarbon components reported in our previously published work (Puduppakkam et al., 2010, “Validation Studies of a Master Kinetic Mechanism for Diesel and Gasoline Surrogate Fuels,” SAE Technical Paper No. 2010-01-0545; Naik et al., 2010, “Validated F-T Fuel Surrogate Model for Simulation of Jet-Engine Combustion,” Proc. ASME Turbo Expo, Paper No. GT2010-23709; Naik et al., 2010, “Applying Detailed Kinetics to Realistic Engine Simulation: The Surrogate Blend Optimizer and Mechanism Reduction Strategies,” SAE J. Engines 3(1), pp. 241–259; Naik et al., 2010, “Modeling the Detailed Chemical Kinetics of Mutual Sensitization in the Oxidation of a Model Fuel for Gasoline and Nitric Oxide,” SAE J. Fuels Lubr. 3(1), pp. 556–566; and Puduppakkam et al., 2009, “Combustion and Emissions Modeling of an HCCI Engine Using Model Fuels,” SAE Technical Paper No. 2009-01-0669), we identified some common issues in the predictive nature of the mechanisms that are associated with inadequacies of the core (C0-C4) mechanism, such as inaccurate predictions of laminar flame speeds and autoignition delay times for several fuels. This core mechanism is shared by all of the mechanisms for the larger hydrocarbon components. Unlike the reaction paths for larger hydrocarbon fuels; however, reaction paths for the core chemistry do not follow prescribed reaction rate-rules. In this work, we revisit our core reaction mechanism for saturated fuels, with the goal of improving predictions for the widest range of fundamental experiments. To evaluate and validate the mechanism improvements, we performed a broad set of simulations of fundamental experiments. These experiments include measurements of ignition delay, flame speed and extinction strain rate, as well as species composition in stirred reactors, flames and flow reactors. The range of conditions covers low to high temperatures, very lean to very rich fuel-air ratios, and low to high pressures. Our core reaction mechanism contains thermochemical parameters derived from a wide variety of sources, including experimental measurements, ab initio calculations, estimation methods and systematic optimization studies. Each technique has its uncertainties and potential inaccuracies. Using a systematic approach that includes sensitivity analysis, reaction-path analysis, consideration of recent literature studies, and an attention to data consistency, we have identified key updates required for the core mechanism. These updates resulted in accurate predictions for various saturated fuels when compared to the data over a broad range of conditions. All reaction rate constants and species thermodynamics and transport parameters remain within known uncertainties and within physically reasonable bounds. Unlike most mechanisms in the literature, the mechanism developed in this work is self-consistent and contains chemistry of all saturated fuels.

References

References
1.
Westbrook
,
C. K.
,
Pitz
,
W.
,
Herbinet
,
O.
,
Curran
,
H. J.
, and
Silke
,
E. J.
, 2009, “
A Detailed Chemical Kinetic Reaction Mechanism for Combustion of n-Alkanes from n-Octane to n-Hexadecane
,”
Combust. Flame
,
156
, pp.
181
191
.
2.
Curran
,
H. J.
,
Gaffuri
,
P.
,
Pitz
,
W. J.
, and
Westbrook
,
C. K.
, 2002, “
A Comprehensive Modeling Study of iso-Octane Oxidation
,”
Combust. Flame
,
129
, pp.
253
280
.
3.
Naik
,
C. V.
,
Pitz
,
W. J.
,
Sjöberg
,
M.
,
Dec
,
J. E.
,
Orme
,
J.
,
Curran
,
H. J.
,
Simmie
,
J. M.
, and
Westbrook
,
C. K.
, 2005, “
Detailed Chemical Kinetic Modeling of Surrogate Fuels for Gasoline and Application to an HCCl Engine
,” SAE Technical Paper No. 2005-01-3741.
4.
Pitz
,
W. J.
,
Naik
,
C. V.
,
Mhaoldúin
,
T. N.
,
Westbrook
,
C. K.
,
Curran
,
H. J.
,
Orme
,
J. P.
, and
Simmie
,
J. M.
, 2007, “
Modeling and Experimental Investigation of Methylcyclohexane Ignition in a Rapid Compression Machine
,”
Proc. Combust. Inst.
,
31
, pp.
267
.
5.
Naik
,
C. V.
, and
Dean
,
A. M.
, 2009, “
Modeling High Pressure Ethane Oxidation and Pyrolysis
,”
Proc. Combust. Inst.
,
32
(
1
), pp.
437
443
.
6.
Li
,
J.
,
Zhao
,
Z.
,
Kazakov
,
A.
,
Chaos
,
M.
,
Dryer
,
F. L.
, and
James
J.
, and
Scire
,
J.
, 2007, “
A Comprehensive Kinetic Mechanism for CO, CH2O, and CH3OH Combustion
,”
Int. J. Chem. Kinet.
,
39
, pp.
109
136
.
7.
Healy
,
D.
,
Kalitan
,
D. M.
,
Aul
,
C. J.
,
Petersen
,
E. L.
,
Bourque
,
G.
, and
Curran
,
H. J.
, 2010, “
Oxidation of C1-C5 Alkane Quinternary Natural Gas Mixtures at High Pressures
,”
Energy Fuels
,
24
(
3
), pp.
1521
1528
.
8.
A High-Temperature Chemical Kinetic Model of n-Alkane Oxidation, 2010, Jetsurf Version 1.0, http://melchior.usc.edu/JetSurF/Index.htmlhttp://melchior.usc.edu/JetSurF/Index.html
9.
Smith
,
G. P.
,
Golden
,
D. M.
,
Frenklach
,
M.
,
Moriarty
,
N. W.
,
Eiteneer
,
B.
,
Goldenberg
,
M.
,
Bowman
,
C. T.
,
Hanson
,
R. K.
,
Song
,
S.
,
William
C.
Gardiner
,
J.
,
Lissianski
,
V. V.
, and
Qin
,
Z.
, 2000, Gri-Mech 3.0, http://www.me.berkeley.edu/gri_mech/http://www.me.berkeley.edu/gri_mech/
10.
Naik
,
C. V.
,
Puduppakkam
,
K. V.
, and
Meeks
,
E.
, 2011, “
An Improved Core Reaction Mechanism for Un-saturated C0-C4 Fuels and Their Blends
,” manuscript in preparation.
11.
Puduppakkam
,
K. V.
,
Naik
,
C. V.
, and
Meeks
,
E.
, 2010, “
Validation Studies of a Master Kinetic Mechanism for Diesel and Gasoline Surrogate Fuels
,” SAE Technical Paper No. 2010-01-0545.
12.
Naik
,
C. V.
,
Puduppakkam
,
K. V.
,
Modak
,
A.
,
Wang
,
C.
, and
Meeks
,
E.
, 2010, “
Validated F-T Fuel Surrogate Model for Simulation of Jet-Engine Combustion
,” Proc. ASME Turbo Expo, Paper No. GT2010-23709.
13.
Naik
,
C. V.
,
Puduppakkam
,
K. V.
, and
Meeks
,
E.
, 2010, “
Applying Detailed Kinetics to Realistic Engine Simulation: The Surrogate Blend Optimizer and Mechanism Reduction Strategies
,”
SAE Int. J. Engines.
,
3
(
1
), pp.
241
259
.
14.
Naik
,
C. V.
,
Puduppakkam
,
K. V.
, and
Meeks
,
E.
, 2010, “
Modeling the Detailed Chemical Kinetics of Mutual Sensitization in the Oxidation of a Model Fuel for Gasoline and Nitric Oxide
,”
SAE Int. J. Fuels Lubr.
,
3
(
1
), pp.
556
566
.
15.
Puduppakkam
,
K.
,
Liang
,
L.
,
Naik
,
C. V.
,
Meeks
,
E.
, and
Bunting
,
B. G.
, 2009, “
Combustion and Emissions Modeling of an HCCI Engine Using Model Fuels
,” SAE Technical Paper No. 2009-01-0669.
16.
Curran
,
H. J.
,
Gaffuri
,
P.
,
Pitz
,
W. J.
, and
Westbrook
,
C. K.
, 1998, “
A Comprehensive Modeling Study of n-Heptane Oxidation
,”
Combust. Flame
,
114
, pp.
149
177
.
17.
Naik
,
C. V.
,
Westbrook
,
C. K.
,
Herbinet
,
O.
,
Pitz
,
W. J.
, and
Mehl
,
M.
, 2011, “
Detailed Chemical Kinetic Reaction Mechanism for Biodiesel Components Methyl Stearate and Methyl Oleate
,”
Proc. Combust. Inst.
,
33
, pp.
383
389
.
18.
Konnov
,
A. A.
, 2008, “
Remaining Uncertainties in the Kinetic Mechanism of Hydrogen Combustion
Combust. Flame
,
152
, pp.
507
528
.
19.
O’conaire
,
M.
,
Curran
,
H. J.
,
Simmie
,
J. M.
,
Pitz
,
W. J.
, and
Westbrook
,
C. K.
, 2004, “
A Comprehensive Modeling Study of Hydrogen Oxidation
,”
Int. J. Chem. Kinet.
,
36
, pp.
603
622
.
20.
Healy
,
D.
,
Kopp
,
M. M.
,
Polley
,
N. L.
,
Petersen
,
E. L.
,
Bourque
,
G.
, and
Curran
,
H. J.
, 2010, “
Methane/n-Butane Ignition Delay Measurements at High Pressure and Detailed Chemical Kinetic Simulations
,”
Energy Fuels
,
24
, pp.
1617
1627
.
21.
Laskin
,
A.
,
Wang
,
H.
, and
Law
,
C. K.
, 2000, “
Detailed Kinetic Modeling of 1,3-Butadiene Oxidation at High Temperatures
,”
Int. J. Chem. Kinet
,
32
, pp.
589
614
.
22.
Zhang
,
H. R.
,
Eddings
,
E. G.
,
Sarofim
,
A. F.
, and
Westbrook
,
C. K.
, 2009, “
Fuel Dependence of Benzene Pathways
,”
Proc. Combust. Inst
,
32
, pp.
377
385
.
23.
Troe
,
J.
, 1983, “
Approximate Expressions for the Yields of Unimolecular Reactions with Chemical and Photochemical Activation
,”
J. Phys. Chem
,
87
(
10
), pp.
1800
1804
.
24.
Nist Chemical Kinetics Database
, 2010, “Standard Reference Database 17 7.0” (Web Version).
25.
Rasmussen
,
C. L.
,
Rasmussen
,
A. E.
, and
Glarborg
,
P.
, 2008, “
Sensitizing Effects of Nox on Ch4 Oxidation at High Pressure
,”
Combust. Flame
,
154
(
3
), pp.
529
545
.
26.
Dagaut
,
P.
,
Glarborg
,
P.
, and
Alzueta
,
M. U.
, 2008, “
The Oxidation of Hydrogen Cyanide and Related Chemistry
,”
Prog. Energy Combust. Sci.
,
34
, pp.
1
46
.
27.
Ritter
,
E. R.
, 1991, “
Therm: A Computer Code for Estimating Thermodynamic Properties for Species Important to Combustion and Reaction Modeling
,”
J. Chem. Inform. Comput. Sci.
,
31
(
3
), pp.
400
408
.
28.
Reaction Design, 2000, Chemkin Collection Release 3.6, Reaction Design, San Diego, CA.
29.
Reaction Design, 2010, Chemkin-Pro 15101, Reaction Design, San Diego, CA.
30.
Dong
,
Y.
,
Holley
,
A. T.
,
Andac
,
M. G.
,
Egolfopoulos
,
F. N.
,
Davis
,
S. G.
,
Middha
,
P.
, and
Wang
,
H.
, 2005, “
Extinction of Premixed H2/Air Flames: Chemical Kinetics and Molecular Diffusion Effects
,”
Combust. Flame
,
142
, pp.
374
387
.
31.
Park
,
O.
,
Veloo
,
P. S.
,
Liu
,
N.
,
Egolfopoulos
,
F. N.
, and
Egolfopoulos
,
F. N.
, 2011, “
Combustion Characteristics of Alternative Gaseous Fuels
,”
Proc. Combust. Inst
,
33
, pp.
887
894
.
32.
Herzler
,
J.
, and
Naumann
,
C.
, 2009, “
Shock-Tube Study of the Ignition of Methane/Ethane/Hydrogen Mixtures with Hydrogen Contents from 0% to 100% at Different Pressures
,”
Proc. Combust. Inst.
,
32
, pp.
213
220
.
33.
Ji
,
C.
,
Dames
,
E.
,
Wang
,
Y. L.
,
Wang
,
H.
, and
Egolfopoulos
,
F. N.
, 2009, “
Propagation and Extinction of Premixed C5-C12 n-Alkane Flames
,”
Combust. Flame
,
157
, pp.
277
287
.
34.
Petersen
,
E. L.
,
Davidson
,
D. F.
, and
Hanson
,
R. K.
, 1999, “
Kinetics Modeling of Shock-Induced Ignition in Low-Dilution Ch4/O2 Mixtures at High Pressures and Intermediate Temperatures
,”
Combust. Flame
,
117
, pp.
272
290
.
35.
Petersen
,
E. L.
,
Kalitan
,
D. M.
,
Simmons
,
S.
,
Bourque
,
G.
,
Curran
,
H. J.
, and
Simmie
,
J. M.
, 2007, “
Methane/Propane Oxidation at High Pressures: Experimental and Detailed Chemical Kinetic Modeling
,”
Proc. Combust. Inst.
,
31
, pp.
447
454
.
36.
Dayma
,
G.
,
Ali
,
K. H.
, and
Dagaut
,
P.
, 2007, “
Experimental and Detailed Kinetic Modeling Study of the High Pressure Oxidation of Methanol Sensitized by Nitric Oxide and Nitrogen Dioxide
,”
Proc. Comb. Inst.
,
31
, pp.
411
418
.
37.
Qin
,
X.
, and
Ju
,
Y.
, 2005, “
Measurements of Burning Velocities of Dimethyl Ether and Air Premixed Flames at Elevated Pressures
,”
Proc. Combust. Inst.
,
30
, pp.
233
240
.
38.
Curran
,
H. J.
,
Fischer
,
S. L.
, and
Dryer
,
F. L.
, 2000, “
The Reaction Kinetics of Dimethyl Ether. Ii: Low- Temperature Oxidation in Flow Reactors
,”
Int. J. Chem. Kinet
,
32
, pp.
741
759
.
39.
Pfahl
,
U.
,
Fieweger
,
K.
, and
Adomeit
,
G.
, 1996, “
Self-Ignition of Diesel-Relevant Hydrocarbon-Air Mixtures under Engine Conditions
,”
Proc. Combust. Inst.
,
26
, pp.
781
789
.
40.
Jomaas
,
G.
,
Zheng
,
X. L.
,
Zhu
,
D. L.
, and
Law
,
C. K.
, 2005, “
Experimental Determination of Counterflow Ignition Temperatures and Laminar Flame Speeds of C2–C3 Hydrocarbons at Atmospheric and Elevated Pressures
,”
Proc. Combust. Inst.
,
30
, pp.
193
200
.
41.
Vagelopoulos
,
C. M.
, and
Egolfopoulos
,
F. N.
, 1998, “
Direct Experimental Determination of Laminar Flame Speeds
,”
Proc. Combust. Inst.
27
, pp.
513
.
42.
Tranter
,
R. S.
,
Raman
,
A.
,
Sivaramakrishnan
,
R.
, and
Brezinsky
,
K.
, 2005, “
Ethane Oxidation and Pyrolysis from 5 Bar to 1000 Bar: Experiments and Simulation
,”
Int. J. Chem. Kinet.
,
37
(
5
), pp.
306
331
.
43.
Burcat
,
A.
,
Scheller
,
K.
, and
Lifshitz
,
A.
, 1971, “
Shock-Tube Investigation of Comparative Ignition Delay Times for C1-C5 Alkanes
,”
Combust. Flame
,
16
, pp.
29
33
.
44.
Davis
,
S. G.
, and
Law
,
C. K.
, 1998, “
Determination of and Fuel Structure Effects on Laminar Flame Speeds of C1 to C8 Hydrocarbons
,”
Combust. Sci. Technol.
,
140
, pp.
427
449
.
45.
Healy
,
D.
,
Donato
,
N. S.
,
Aul
,
C. J.
,
Petersen
,
E. L.
,
Zinner
,
C. M.
,
Bourque
,
G.
, and
Curran
,
H. J.
, 2010, “
n-Butane: Ignition Delay Measurements at High Pressure and Detailed Chemical Kinetic Simulations
,”
Combust. Flame
,
157
, pp.
1526
1539
.
46.
Healy
,
D.
,
Donato
,
N. S.
,
Aul
,
C. J.
,
Petersen
,
E. L.
,
Zinner
,
C. M.
,
Bourque
,
G.
, and
Curran
,
H. J.
, 2010, “
Isobutane Ignition Delay Time Measurements at High Pressure and Detailed Chemical Kinetic Simulations
,”
Combust. Flame
,
157
, pp.
1540
1551
.
47.
Veloo
,
P. S.
,
Wang
,
Y. L.
,
Egolfopoulos
,
F. N.
, and
Westbrook
,
C. K.
, 2010, “
A Comparative Experimental and Computational Study of Methanol, Ethanol, and n-Butanol Flames
,
Combust. Flame
,
157
(
10
), pp.
1989
2004
.
48.
Moss
,
J. T.
,
Berkowitz
,
A. M.
,
Oehlschlaeger
,
M. A.
,
Biet
,
J.
,
Warth
,
V.
,
Glaude
,
P.-A.
, and
Battin-Leclerc
,
F.
, 2008, “
An Experimental and Kinetic Modeling Study of the Oxidation of the Four Isomers of Butanol
J. Phys. Chem A
,
112
(
43
), pp.
10843
10855
.
49.
Black
,
G.
,
Curran
,
H. J.
,
Pichon
,
S.
,
Simmie
,
J. M.
, and
Zhukov
,
V.
, 2010, “
Bio-Butanol: Combustion Properties and Detailed Chemical Kinetic Model
,”
Combust. Flame
,
157
, pp.
363
373
.
50.
Dagaut
,
P.
,
Sarathy
,
S. M.
, and
Thomson
,
M. J.
, 2009, “
A Chemical Kinetic Study of n-Butanol Oxidation at Elevated Pressure in a Jet Stirred Reactor
,”
Proc. Combust. Inst.
,
32
, pp.
229
237
.
51.
Naik
,
C. V.
,
Puduppakkam
,
K. V.
,
Modak
,
A.
,
Meeks
,
E.
,
Wang
,
Y. L.
,
Feng
,
Q.
, and
Tsotsis
,
T. T.
, 2011, “
Detailed Chemical Kinetic Mechansim for Alternate Jet Fuel Surrogates
,”
Combust. Flame
,
158
, pp.
434
445
.
52.
Thomsen
,
D. D.
,
Kuligowski
,
F. F.
, and
Laurendeau
,
N. M.
, 1999, “
Modeling of No Formation in Premixed, High-Pressure Flames
,”
Combust. Flame
,
119
, pp.
307
318
.
53.
Dowdy
,
D. R.
,
Smith
,
D. B.
,
Taylor
,
S. C.
, and
Williams
,
A.
, 1990, “
The Use of Expanding Spherical Flames to Determine Burning Velocities and Stretch Effects in Hydrogen/Air Mixtures
,”
Proc. Combust. Inst.
,
23
pp.
325
332
.
54.
Kwon
,
O. C.
, and
Faeth
,
G. M.
, 2001, “
Flame/Stretch Interactions of Premixed Hydrogen-Fueled Flames: Measurements and Predictions
,”
Combust. Flame
,
124
, pp.
590
610
.
55.
Aung
,
K. T.
,
Hassan
,
M. I.
, and
Faeth
,
G. M.
, 1997, “
Flame Stretch Interactions of Laminar Premixed Hydrogen/Air Flames at Normal Temperature and Pressure
,”
Combust. Flame
,
109
, pp.
1
24
.
56.
Tse
,
S. D.
,
Zhu
,
D. L.
, and
Law
,
C. K.
, 2000, “
Morphology and Burning Rates of Expanding Spherical Flames in H2/O2/Inert Mixtures up to 60 Atmospheres
,”
Proc. Combust. Inst.
,
28
, pp.
1793
1800
.
57.
Vagelopoulos
,
C. M.
, and
Egolfopoulos
,
F. N.
, 1994, “
Laminar Flame Speeds and Extinction Strain Rate of Mixtures of Carbon Monoxide with Hydrogen, Methane and Air
Proc. Combust. Inst.
,
25
, pp.
1317
1323
.
58.
Verhelst
,
S.
,
Woolley
,
R.
,
Lawes
,
M.
, and
Sierens
,
R.
, 2005, “
Laminar and Unstable Burning Velocities and Markstein Lengths of Hydrogen–Air Mixtures at Engine-Like Conditions
,”
Proc. Comb. Inst.
,
30
, pp.
209
216
.
59.
Vagelopoulos
,
C. M.
,
Egolfopoulos
,
F. N.
, and
Law
,
C. K.
, 1994, “
Further Considerations on the Determination of Laminar Flame Speeds with the Counterflow Twin-Flame Technique
,”
Proc. Combust. Inst.
,
25
, pp.
1341
.
60.
Van Maaren
,
A.
,
Thung
,
D. S.
, and
De Goey
,
L. P. H.
, 1994, “
Measurement of Flame Temperature and Adiabatic Burning Velocity of Methane/Air Mixtures
,”
Combust. Sci. Technol.
,
96
(
4–6
), pp.
327
344
.
61.
Egolfopoulos
,
F. N.
,
Du
,
D. X.
, and
Law
,
C. K.
, 1992, “
A Study on Ethanol Oxidation Kinetics in Laminar Premixed Flames, Flow Reactors, and Shock Tubes
,”
Proc. Combust. Inst.
,
24
, pp.
833
841
.
62.
Gulder
,
O. L.
, 1982, “
Laminar Burning Velocities of Methanol, Ethanol and Isooctane-Air Mixtures
,”
Proc. Combust. Inst.
,
19
, pp.
275
281
.
63.
Liao
,
S. Y.
,
Jiang
,
D. M.
,
Huang
,
Z. H.
,
Zeng
,
K.
, and
Cheng
,
Q.
, 2007, “
Determination of the Laminar Burning Velocities for Mixtures of Ethanol and Air at Elevated Temperatures
,”
Appl. Therm. Eng.
,
27
, pp.
374
380
.
64.
Daly
,
C. A.
,
Simmie
,
J. M.
,
Wurmel
,
J.
,
Djebaili
,
N.
, and
Paillard
,
C.
, 2001, “
Burning Velocities of Dimethyl Ether and Air
,”
Combust. Flame
,
125
, pp.
1349
1340
.
65.
Zhao
,
Z.
,
Chaos
,
M.
,
Kazakov
,
A.
, and
Dryer
,
F. L.
, 2008, “
Thermal Decomposition Reaction and a Comprehensive Kinetic Model of Dimethyl Ether
,”
Int. J. Chem. Kinet
,
40
, pp.
1
18
.
You do not currently have access to this content.