The merit of using supercritical CO2(scCO2) as the working fluid of a closed Brayton cycle gas turbine is now widely recognized, and the development of this technology is now actively pursued. scCO2 gas turbine power plants are an attractive option for solar, geothermal, and nuclear energy conversion. Among the challenges that must be overcome in order to successfully bring the technology to the market is that the efficiency of the compressor and turbine operating with the supercritical fluid should be increased as much as possible. High efficiency can be reached by means of sophisticated aerodynamic design, which, compared to other overall efficiency improvements, like cycle maximum pressure and temperature increase, or increase of recuperator effectiveness, does not require an increase in equipment cost, but only an additional effort in research and development. This paper reports a three-dimensional computational fluid dynamics (CFD) study of a high-speed centrifugal compressor operating with CO2 in the thermodynamic region slightly above the vapor–liquid critical point. The investigated geometry is the compressor impeller tested in the Sandia scCO2 compression loop facility. The fluid dynamic simulations are performed with a fully implicit parallel Reynolds-averaged Navier–Stokes code based on a finite volume formulation on arbitrary polyhedral mesh elements. In order to account for the strongly nonlinear variation of the thermophysical properties of supercritical CO2, the CFD code is coupled with an extensive library for the computation of properties of fluids and mixtures. A specialized look-up table approach and a meshing technique suited for turbomachinery geometries are also among the novelties introduced in the developed methodology. A detailed evaluation of the CFD results highlights the challenges of numerical studies aimed at the simulation of technically relevant compressible flows occurring close to the liquid–vapor critical point. The data of the obtained flow field are used for a comparison with experiments performed at the Sandia scCO2 compression-loop facility.

References

References
1.
Angelino
,
G.
,
1969
, “
Carbon Dioxide Condensation Cycles for Power Production
,” ASME
J. Eng. Power Trans.
,
10
, pp.
272
287
.
2.
Feher
,
E. G.
,
1968
, “
The Supercritical Thermodynamic Power Cycle
,”
Energ. Convers.
,
8
, pp.
85
90
.10.1016/0013-7480(68)90105-8
3.
Dostal
,
V.
,
Driscoll
,
M. J.
, and
Hejzlar
,
P.
,
2004
, “
A Supercritical Carbon Dioxide Cycle for Next Generation Nuclear Reactors
,” MIT-ANP-Series, Massachusetts Institute of Technology, Boston, MA, MIT-ANP-TR-100.
4.
Wright
,
S. A.
,
Radel
,
R. F.
,
Vernon
,
M. E.
,
Rochau
,
G. E.
, and
Pickard
,
P. S.
,
2010
, “
Operation and Analysis of a Supercritical CO2 Brayton Cycle
,” Sandia Report 2010–0171.
5.
Colonna
,
P.
,
Harinck
,
J.
,
Rebay
,
S.
, and
Guardone
,
A.
,
2008
, “
Real-Gas Effects in Organic Rankine Cycle Turbine Nozzles
,”
J. Propul. Power
,
24
(
2
), pp.
282
294
.10.2514/1.29718
6.
Harinck
,
J.
,
Colonna
,
P.
,
Guardone
,
A.
, and
Rebay
,
S.
,
2010
, “
Influence of Thermodynamic Models in 2D Flow Simulations of Turboexpanders
,”
ASME J. Turbomach.
,
132
(
1
), p. 011001.10.1115/1.3192146
7.
Takagi
,
K.
,
Muto
,
Y.
,
Ishizuka
,
T.
,
Kikura
,
H.
, and
Aritomi
,
M.
,
2010
, “
Research on Flow Characteristics of Supercritical CO2 Axial Compressor Blades by CFD Analysis
,”
J. Power Energ. Syst.
,
4
(
1
), pp.
138
149
.10.1299/jpes.4.138
8.
Pecnik
,
R.
,
Terrapon
,
V. E.
,
Ham
,
F.
,
Iaccarino
,
G.
, and
Pitsch
,
H.
,
2012
, “
Reynolds-Averaged Navier–Stokes Simulations of the Hyshot II Scramjet
,”
AIAA J.
,
50
(
8
), pp.
1717
1732
.10.2514/1.J051473
9.
Pečnik
,
R.
,
Witteveen
,
J. A. S.
, and
Iaccarino
,
G.
,
2011
, “
Uncertainty Quantification for Laminar-Turbulent Transition Prediction in RANS Turbomachinery Applications
,” 49th AIAA Aerospace Sciences Meeting, Orlando, FL, Jan. 4–7, AIAA Paper No. 2011–660.
10.
Spalart
,
P. R.
, and
Allmaras
,
S. R.
,
1992
, “
A One-Equation Turbulence Model for Aerodynamic Flows
,” AIAA Paper No. 92-0439.
11.
Menter
,
F. R.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.10.2514/3.12149
12.
Satish
,
B.
,
Buschelman
,
K.
,
Eijkhout
,
V.
,
Gropp
,
W. D.
,
Kaushik
,
D.
,
Knepley
,
M. G.
,
McInnes
,
L. C.
,
Smith
,
B. F.
, and
Zhang
,
H.
,
2009
, PETSc Web page, http://www.mcs.anl.gov/petsc
13.
Berger
,
M.
,
Aftosmis
,
M. J.
, and
Murman
,
S. M.
,
2005
, “
Analysis of Slope Limiters on Irregular Grids
,” 43rd AIAA Aerospace Sciences Meeting, Reno, NV, Jan. 10-13, AIAA Paper No. 2005-0490.
14.
Barth
,
T. J.
, and
Jespersen
,
D. C.
,
1989
, “
The Design and Application of Upwind Schemes on Unstructured Meshes
,” AIAA Paper No. 89-0366.
15.
Venkatakrishnan
,
V.
,
1995
, “
Convergence to Steady State Solutions of the Euler Equations on Unstructures Grids With Limiters
,”
J. Comput. Phys.
,
118
(
1
), pp.
120
130
.10.1006/jcph.1995.1084
16.
Roe
,
P. L.
,
1981
, “
Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes
,”
J. Comput. Phys.
,
43
(
2
), pp.
357
372
.10.1016/0021-9991(81)90128-5
17.
Candler
,
G. V.
,
Barnhardt
,
M. D.
,
Drayna
,
T. M.
,
Nompelis
,
I.
,
Peterson
,
D. M.
, and
Subbareddy
,
P.
,
2007
, “
Unstructured Grid Approaches for Accurate Aeroheating Simulations
,” AIAA Paper No. 2007-3959.
18.
Quirk
,
J. J.
,
1994
, “
A Contribution to the Great Riemann Solver Debate
,”
Int. J. Numer. Meth. Fluids
,
18
(
6
), pp.
555
574
.10.1002/fld.1650180603
19.
Van Leer
,
B.
,
Lee
,
W. T.
, and
Powell
,
K. G.
,
1989
, “
Sonic-Point Capturing
,” AIAA Paper No. 89-1945.
20.
Nompelis
,
I.
,
Drayna
,
T. W.
, and
Candler
,
G. V.
,
2005
, “
A Parallel Unstructured Implicit Solver for Hypersonic Reacting Flow Simulation
,” AIAA Paper No. 2005–4867.
21.
Liou
,
M.-S.
,
1996
, “
A Sequel to AUSM: AUSM+
,”
J. Comput. Phys.
,
129
(
2
), pp.
364
382
.10.1006/jcph.1996.0256
22.
Ham
,
F.
, and
Iaccarino
,
G.
,
2004
, “
Energy Conservation in Collocated Discretization Schemes on Unstructured Meshes
,” Annual Research Briefs 2004, Center for Turbulence Research, NASA Ames/Stanford University, Stanford, CA.
23.
Colonna
,
P.
, and
Van der Stelt
,
T.
,
2005
, “
Fluidprop: A Program for the Estimation of Thermophysical Properties of Fluids
,” Energy Technology Section, Delft University of Technology, Delft, The Netherlands, available at: http://www.fluidprop.com
24.
Lemmon
,
E. W.
,
McLinden
,
M. O.
, and
Huber
,
M. L.
,
2002
, “
NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties-REFPROP, Version 8.0
,” National Institute of Standards and Technology, Standard Reference Data Program, Gaithersburg, MD.
25.
Span
,
R.
, and
Wagner
,
W.
,
2003
, “
Equations of State for Technical Applications. I. Simultaneously Optimized Functional Forms for Nonpolar and Polar Fluids
,”
Int. J. Thermophys.
,
24
, pp.
1
39
.10.1023/A:1022390430888
26.
Span
,
R.
, and
Wagner
,
W.
,
2003
, “
Equations of State for Technical Applications. II. Results for Nonpolar Fluids
,”
Int. J. Thermophys.
,
24
, pp.
41
109
.10.1023/A:1022310214958
27.
ANSYS,
2009
, “
ANSYS BladeGen, Release 13.0 Users Guide
,” ANSYS, Inc., Canonsburg, PA.
28.
Shewchuk
,
J.
,
1996
, “
Triangle: Engineering a 2D Quality Mesh Generator and Delaunay Triangulator
,”
Applied Computational Geometry Towards Geometric Engineering
(Lecture Notes in Computer Science), Vol. 1148,
M.
Lin
and
D.
Manocha
, eds.,
Springer
,
Berlin/Heidelberg
, pp.
203
222
.
29.
Fuller
,
R. L.
, and
Eisemann
,
K.
,
2011
, “
Centrifugal Compressor Off-Design Performance for Super-Critical CO2
,” Supercritical CO2 Power Cycle Symposium, Boulder, CO, May.
30.
Bae
,
J.
,
Yoo
,
J.
, and
Choi
,
H.
,
2005
, “
Direct Numerical Simulation of Turbulent Supercritical Flows With Heat Transfer
,”
Phys. Fluids
,
17
(
10
), pp. 1–24.10.1063/1.2047588
31.
Sokolichin
,
A.
,
Eigenberger
,
G.
,
Lapin
,
A.
, and
Lübbert
,
A.
,
1997
, “
Dynamic Numerical Simulation of Gas-Liquid Two-Phase Flows: Euler/Euler Versus Euler/Lagrange
,”
Chem. Eng. Sci.
,
52
(
4
), pp.
611
626
.10.1016/S0009-2509(96)00425-3
32.
Blesgen
,
T.
,
1999
, “
Generalization of the Navier–Stokes Equations to Two-Phase Flows
,”
J. Phys. D Appl. Phys.
,
32
(
10
), pp.
1119
1123
.10.1088/0022-3727/32/10/307
33.
Nikkhahi
,
B.
,
Shams
,
M.
, and
Ziabasharhagh
,
M.
,
2009
, “
A Numerical Investigation of Two-Phase Steam Flow Around a 2-D Turbine’s Rotor Tip
,”
Int. Commun. Heat Mass Transf.
,
36
(
6
), pp.
632
639
.10.1016/j.icheatmasstransfer.2009.03.004
You do not currently have access to this content.