Gas turbine combustor design relies strongly on the turbulent flame velocity over the whole turbine operation range. Due to the fact that turbulent flame velocity depends strongly on the laminar one, its characterization at different thermodynamic conditions is necessary for further optimization of gas turbines. The Markstein number, which quantifies the response of the flame to the stretch, also has to be considered. Additionally, the Markstein number can be utilized as an indicator for laminar and turbulent flame front stability. Current attempts to replace conventional fuels, such as kerosene, with alternative ones, obtrude their comparison in order to find the most appropriate substitute. Additionally, significant differences in the flame behavior, which could be recognized through different combustion characteristics, can lead to modification of currently used gas turbine design. Even so, the experimental data of alternative fuels are scarce, especially at elevated pressure conditions. So, the combustion characteristics, laminar burning velocity, and Markstein number of kerosene Jet A-1 and several alternative fuels (gas to liquid (GTL) and GTL blends) are investigated experimentally in an explosion vessel. For this purpose an optical laser method is employed based on the Mie-scattering of the laser light by smoke particles. Within this experimental study the influence of three crucial parameters, initial temperature, initial pressure, and mixture composition on the burning velocity and Markstein number, are investigated. The experiments are performed at three different pressures 1, 2, and 4 bar; three different temperatures 100 °C, 150 °C, and 200 °C; and for a range of equivalence ratio 0.67–1.67. The observed results are compared and discussed in detail.

References

1.
Blakey
,
S.
,
Rye
,
L.
, and
Wilson
,
C. W.
,
2011
, “
Aviation Gas Turbine Alternative Fuels: A Review
,”
Proc. Comb. Inst.
,
33
, pp.
2863
2885
.10.1016/j.proci.2010.09.011
2.
Lefebvre
,
A.
,
1983
,
Gas Turbine Combustion
,
Hemisphere Publishing Corp
,
Washington, D.C
.
3.
Gardner
,
L.
, and
Whyte
,
R. B.
, 1990, “
Gas Turbine Fuels
,”
Design of Modern Turbine Combustors
, A. M. Mellor, ed.,
Academic Press Ltd
.,
London
.
4.
Armstrong
,
F. E.
,
Allen
,
J. E.
, and
Denning
,
R. M.
,
1997
, “
Fuel-Related Issues Concerning the Future of Aviation
,”
Proc. IMechE
,
211
(G), pp. 1–11.
5.
Kumar
,
K.
,
Sung
,
C. J.
, and
Hui
,
X.
,
2009
, “
Laminar Flame Speeds and Extinction Limits of Conventional and Alternative Jet Fuels
,” 47th
American Institute of Aeronautics and Astronautics Inc. (AIAA) Aerospace Science Meeting
,
Orlando, FL
, January 5–8, AIAA
2009
991
.
6.
Yu
,
G.
,
Law
,
C. K.
, and
Wu
,
K.
,
1986
, “
Laminar Flame Speeds of Hydrocarbon + Air Mixtures With Hydrogen Addition
,”
Combust. Flame
,
63
, pp.
339
347
.10.1016/0010-2180(86)90003-9
7.
Bosschaart
,
K. J.
, and
De Goey
L. P. H.
,
2004
, “
The Laminar Burning Velocity of Flames Propagating in Mixtures of Hydrocarbons and Air Measured With the Heat Flux Method
,”
Combust. Flame
,
136
, pp.
261
269
.10.1016/j.combustflame.2003.10.005
8.
Weiss
,
M.
,
Zarzalis
,
N.
, and
Suntz
,
R.
2008
, “
Experimental Study of Markstein Number Effects on Laminar Flamelet Velocity in Turbulent Premixed Flames
,”
Combust. Flame
,
154
, pp.
671
691
.10.1016/j.combustflame.2008.06.011
9.
Andrews
,
G. E.
, and
Bradley
,
D.
,
1972
, “
The Burning Velocity of Methane-Air Mixtures
,”
Combust. Flame
,
19
, pp.
275
288
.10.1016/S0010-2180(72)80218-9
10.
Bradley
,
D.
,
Gaskell
,
P. H.
, and
Gu
,
X. J.
,
1996
, “
Burning Velocities, Markstein Lengths, and Flame Quenching for Spherical Methane-Air Flames: A Computational Study
,”
Combust. Flame
,
104
, pp.
176
198
.10.1016/0010-2180(95)00115-8
11.
Poinstot
T.
, and
Veynante
,
D.
,
2001
,
Theoretical and Numerical Combustion
,
Edwards
,
Philadelphia, PA
.
12.
Wu
,
X.
,
Huang
,
Z.
,
Wang
,
X.
,
Jin
,
C.
,
Tang
,
C.
,
Wie
,
L.
, and
Law
,
C. K.
,
2011
, “
Laminar Burning Velocities and Flame Instabilities of 2,5-Dimethylfuran-Air Mixtures at Elevated Pressures
,”
Combust. Flame
,
158
, pp.
539
546
.10.1016/j.combustflame.2010.10.006
13.
Karpov
,
V. P.
,
Lipatnovi
,
N.
, and
Wolanski
,
P.
,
1997
, “
Finding the Markstein Number Using the Measurements of Expanding Spherical Laminar Flames
,”
Combust. Flame
,
109
, pp.
436
448
.10.1016/S0010-2180(96)00166-6
14.
Bradley
,
D.
,
Hicks
,
R. A.
,
Lawes
,
M.
,
Sheppard
,
C. G. W.
, and
Woolley
,
R.
,
1998
, “
The Measurement of Laminar Burning Velocities and Markstein Numbers for Iso-Octane–Air and Iso-Octane–n-Heptane–Air Mixtures at Elevated Temperatures and Pressures in an Explosion Bomb
,”
Combust. Flame
,
115
, pp.
126
144
.10.1016/S0010-2180(97)00349-0
15.
Marley
,
S. K.
, and
Roberts
,
W. L.
,
2005
, “
Measurements of Laminar Burning Velocity and Markstein Number Using High-Speed Chemiluminescence Imaging
,”
Combust. Flame
,
141
, pp.
473
477
.10.1016/j.combustflame.2005.02.011
16.
Hu
,
E.
,
Huang
,
Z.
, and
He
,
J.
,
2009
, “
Measurements of Laminar Burning Velocities and Onset of Cellular Instabilities of Methane–Hydrogen–Air Flames at Elevated Pressures and Temperatures
,”
Int. J. Hydrogen Energ.
,
34
, pp.
5574
5584
.10.1016/j.ijhydene.2009.04.058
17.
Gu
,
X.
,
Huang
,
Z.
and
Li
,
Q.
,
2010
, “
Laminar Burning Velocities and Flame Instabilities of Butanol Isomers–Air Mixtures
,”
Combust. Flame
,
157
, pp.
2318
2325
.10.1016/j.combustflame.2010.07.003
18.
Karlovitz
,
B.
,
Denniston
,
D. W.
,
Knapschaefer
,
D. H.
, and
Wells
,
F. E.
,
1952
, “
Studies on Turbulent Flames: A. Flame Propagation Across Velocity Gradients B. Turbulence Measurement in Flames,”
Fourth International Symposium on Combustion
,
Cambridge, MA
, September 1–5, Vol. 4(1), pp.
613
620
10.1016/S0082-0784(53)80082-2.
19.
Clavin
,
P.
,
1985
, “
Dynamic Behaviour of Premixed Flame Fronts in Laminar and Turbulent Flows,”
Prog. Energ. Combust.
,
11
, pp.
1
59
.10.1016/0360-1285(85)90012-7
20.
Law
,
C. K.
,
1988
, “
Dynamics of Stretched Flames
,”
22nd International Symposium on Combustion
, Vol. 22(1), The Combustion Institute, Pittsburgh, PA, pp.
1381
1402
10.1016/S0082-0784(89)80149-3.
21.
Markstein
,
G. H.
,
1951
, “
Experimental and Theoretical Studies of Flame-Front Stability
,”
J. Aeronaut. Sci.
,
18
, pp.
199
209
.
22.
Matalon
,
M.
, and
Matkowsky
,
B. J.
,
1980
, “
Flames as Gas Dynamic Discontinuities
,”
J. Fluid Mech.
,
124
, pp.
239
259
.10.1017/S0022112082002481
23.
Dickson
,
C. L.
, and
Woodward
,
P. W.
,
1992
, “
Aviation Turbine Fuels
,” National Institute for Petroleum and Energy Research, NIPER-174 PPS 92/2.
24.
Faith
,
L. E.
,
Ackermann
,
G. H.
, and
Henderson
,
H. T.
,
1971
, “
Heat Sink Capability of Jet A Fuel: Heat Transfer and Cooking Studies
,” Shell Development Company, Emeryville, CA.
25.
Rachner
,
M.
,
1998
, Die Stoffeigenschafften von Kerosin Jet A-1, Deutshes Zentrum fuer Luft- und Raumfahrt e. V., Köln, Germany.
26.
Gu
,
X. J.
,
Haq
,
M. Z.
,
Lawes
,
M.
, and
Woolley
,
R.
,
2000
, “
Laminar Burning Velocity and Markstein Lengths of Methane-Air Mixtures
,”
Combust. Flame
,
121
, pp.
41
58
.10.1016/S0010-2180(99)00142-X
27.
Kumar
K.
,
2007
, “
Global Combustion Responces of Practical Hydrocarbon Fuels: n-Heptane, Iso-Octane, n-Decane, n-Dodecane and Ethylene
,” Ph.D., thesis, Case
Western Reserve University
,
Cleveland, OH
.
28.
Warnatz
,
J.
,
Maas
,
U.
, and
Dibble
,
R. W.
,
2006
,
Combustion
,
Springer
,
Berlin
.
29.
Law
,
C. K.
,
Jomaas
,
G.
, and
Bechtold
,
J. K.
,
2005
, “
Cellular Instabilities of Expanding Hydrogen/Propane Spherical Flames at Elevated Pressures: Theory and Experiment
,”
Proc. Comb. Inst.
,
30
pp.
159
167
.10.1016/j.proci.2004.08.266
You do not currently have access to this content.