This study aims to present various design aspects and realizable performance of the natural gas fired semi-closed oxy-fuel combustion combined cycle (SCOC-CC). The design parameters of the cycle are set up on the basis of the component technologies of today’s state-of-the-art gas turbines with a turbine inlet temperature between 1400 °C and 1600 °C. The most important part of the cycle analysis is the turbine cooling, which considerably affects the cycle performance. A thermodynamic cooling model is introduced in order to predict the reasonable amount of turbine coolant needed to maintain the turbine blade temperature of the SCOC-CC at the levels of those of conventional gas turbines. The optimal pressure ratio ranges of the SCOC-CC for two different turbine inlet temperature levels are researched. The performance penalty due to the CO2 capture is examined. The influences of the purity of the oxygen provided by the air separation unit on the cycle performance are also investigated. A comparison with the conventional combined cycle, adopting a postcombustion CO2 capture, is carried out, taking into account the relationship between the performance and the CO2 capture rate.

References

References
1.
Franco
,
F. J.
,
Mina
,
T.
,
Woollatt
,
G.
,
Rost
,
M.
, and
Bolland
,
O.
, 2006, “
Characteristics of Cycle Components for CO2 Capture
,” Proceedings of the 8th International Greenhouse Gas Control Technologies, Trondheim, Norway, June 19–22.
2.
Jericha
,
H.
,
Sanz
,
W.
,
Gottlich
,
E.
, and
Neumayer
,
F.
, 2008, “
Design Details of a 600 MW Graz Cycle Thermal Power Plant for CO2 Capture
,”
ASME
Paper No. GT2008-50515.
3.
Anderson
,
R. E.
,
MacAdam
,
S.
,
Viteri
,
F.
,
Davies
,
D. O.
,
Downs
,
J. P.
, and
Paliszewski
,
A.
, 2008, “
Adapting Gas Turbines to Zero Emission Oxy-Fuel Power Plants
,”
ASME
Paper No. GT2008-51377.
4.
Sanz
,
W.
,
Jericha
,
H.
,
Bauer
,
B.
, and
Gottlich
,
E.
, 2008, “
Qualitative and Quantitative Comparison of Two Promising Oxy-Fuel Power Cycles for CO2 Capture
,”
ASME J. Eng. Gas Turbines Power
,
130
, pp.
1
11
.
5.
Tak
,
S. H.
,
Park
,
S. K.
,
Kim
,
T. S.
,
Sohn
,
J. L.
, and
Lee
,
Y. D.
, 2010, “
Performance Analyses of Oxy-Fuel Power Generation Systems Including CO2 Capture: Comparison of Two Cycles Using Different Recirculation Fluids
,”
J. Mech. Sci. Technol.
,
24
, pp.
1947
1954
.
6.
Ulizra
,
I.
and
Pilidis
,
P.
, 1997, “
A Semi Closed-Cycle Gas Turbine With Carbon Dioxide-Argon as Working Fluid
,”
ASME J. Eng. Gas Turbines Power
,
119
, pp.
612
616
.
7.
Jackson
,
A. J. B.
,
Neto
,
A. C.
,
Whellens
,
M. W.
, and
Audus
,
H.
, 2000, “
Gas Turbine Performance Using Carbon Dioxide as Working Fluid in Closed Cycle Operation
,” ASME Turbo Expo 2000, Munich, Germany, May 8–11, ASME Paper No. 2000-GT-153.
8.
Bolland
,
O.
, and
Mathieu
,
P.
, 1998, “
Comparison of Two CO2 Removal Options in Combined Cycle Power Plants
,”
Energy Convers. Manage.
,
39
(
16–18
), pp.
1653
1663
.
9.
Kvamsdal
,
H. M.
,
Jordal
,
K.
, and
Bolland
,
O.
, 2007, “
A Quantitative Comparison of Gas Turbine Cycles With CO2 Capture
,”
Energy
,
32
, pp.
10
24
.
10.
Yang.
H. J.
,
Kang.
S. Y.
,
Kang.
D. W.
, and
Kim.
T. S.
, 2011, “
Performance Expectation of a Semi-Closed Oxy-Fuel Combustion Combined Cycle Using an Existing Gas Turbine
,” International Gas Turbine Congress, Osaka, Japan, Nov. 14–18, Paper No. IGTC2011-0231.
11.
Jordal
,
K.
,
Bolland
,
O.
, and
Klang
,
A.
, 2003, “
Aspects of Cooled Gas Turbine Modelling for the Semi-Closed O2/CO2 Cycle With CO2 Capture
,”
ASME
Paper No. GT2003-38067.
12.
Jonsson
,
M.
,
Bolland
,
O.
,
Bucker
,
D.
, and
Rost
,
M.
, 2005 “
Gas Turbine Cooling Model for Evaluation of Novel Cycles
,” Proceedings of ECOS 2005, Trondheim, Norway, June 20–22.
13.
Sammak
,
M.
,
Jonshagen
,
K.
,
Thern
,
M.
,
Genrup
,
M.
,
Thorbergsson
,
E.
,
Gronstedt
,
T.
, and
Dahlquist
,
A.
, 2011, “
Conceptual Design of a Mid-Sized Semi-Closed Oxy-Fuel Combustion Combined Cycle
,”
ASME
Paper No. GT2011-46299.
14.
Amann
,
J. M.
,
Kanniche
,
M.
, and
Bouallos
,
C.
2009, “
Natural Gas Combined Cycle Power Plant Modified Into O2/CO2 Cycle for CO2 Capture
,”
Energy Convers. Manage.
,
50
, pp.
510
521
.
15.
Enter Software Inc., GATECYCLE, Ver. 6.0, 2006.
16.
Aspen Technology Inc., ASPENONE HYSYS, Ver. 7.2, 2006.5.
17.
Gas Turbine World 2011 Performance Specifications, 41(1), p. 20, 39.
18.
Biasi
,
V.
, 2010, “
1600 °C-Class M501J Plant Rated 460 MW and Over 61% Efficiency
,”
Gas Turbine World
,
40
, pp.
10
14
.
19.
Kim
,
T. S.
, and
Ro
,
S. T.
, 1995, “
Comparative Evaluation of the Effect of Turbine Configuration on the Performance of Heavy-Duty Gas Turbines
,” ASME Paper No. 95-GT-334.
20.
Moustapha
,
H.
,
Zelesky
,
M F.
,
,
Baines
,
N. C.
, and
Japikse
,
D.
, 2003, “
Turbine Fundamentals and Parameters
,”
Axial and Radial Turbines
,
Concepts NREC
,
White River Junction, VT
, Chap. 1.
21.
Park
,
S. K.
,
Ahn
,
J. H.
, and
Kim
,
T. S.
, 2011, “
Performance Evaluation of Integrated Gasification Solid Oxide Fuel Cell/Gas Turbine Systems Including Carbon Dioxide Capture
,”
Appl. Energy
,
88
, pp.
2976
2987
.
22.
Jeong
,
D. H.
,
Yoon
,
S. H.
,
Lee
,
J. J.
, and
Kim
,
T. S.
, 2008, “
Evaluation of Component Characteristics of a Reheat Cycle Gas Turbine Using Measured Performance Data
,”
J. Mech. Sci. Technol.
,
22
, pp.
350
360
.
23.
Oei
,
L. E.
, 2007, “
Aspen HYSYS Simulation of CO2 Removal by Amine Absorption From a Gas Based Power Plant
,” SIMS2007 Conference, Goteborg, Sweden, October 30–31.
24.
Pfaff
,
I.
,
Oexmann
,
J.
, and
Kather
,
A.
, 2010, “
Optimised Integration of Post-Combustion CO2 Capture Process in Greenfield Power Plants
,”
Energy
,
35
, pp.
4030
4041
.
25.
Kanniche
,
M.
,
Gros-Bonnivard
,
R.
,
Jaud
,
P.
,
Valle-Marcos
,
J.
,
Amann
,
J.
, and
Bouallou
,
C.
, 2010, “
Pre-Combustion, Post-Combustion and Oxy-Combustion in Thermal Power Plant for CO2 Capture
,”
Appl. Therm. Eng.
,
30
, pp.
53
62
.
You do not currently have access to this content.