This paper presents the transient aerothermal analysis of a gas turbine internal air system through an engine flight cycle featuring multiple fluid cavities that surround a HP turbine disk and the adjacent structures. Strongly coupled fluid-structure thermal interaction problems require significant computational effort to resolve nonlinearities on the interface for each time step. Simulation times may grow impractical if multiple fluid domains are included in the analysis. A new strategy is employed to decrease the cost of coupled aerothermal analysis. Significantly lower fluid domain solver invocation counts are demonstrated as opposed to the traditional coupling approach formulated on the estimates of heat transfer coefficient. Numerical results are presented using 2D finite element conduction model combined with 2D flow calculation in five separate cavities interconnected through the inlet and outlet boundaries. The coupled solutions are discussed and validated against a nominal stand-alone model. Relative performance of both coupling techniques is evaluated.

References

References
1.
Chew
,
J.
, and
Hills
,
N.
, 2007, “
Computational Fluid Dynamics for Turbomachinery Internal Air Systems
,”
Philos. Trans. R. Soc. London
,
365
, pp.
2587
2611
.
2.
Chew
,
J.
, and
Hills
,
N.
, 2009, “
Computational Fluid Dynamics and Virtual Aeroengine Modelling
,”
Proc. Inst. Mech. Eng., Part C
223
(
12
), pp.
2821
2834
.
3.
Montenay
,
A.
,
Paté
,
L.
, and
Deboué
,
J.
, 2000, “
Conjugate Heat Transfer Analysis of an Engine Internal Cavity
,” ASME Paper No. 2000-GT-282.
4.
Verdicchio
,
J.
,
Chew
,
J.
, and
Hills
,
N.
, 2001, “
Coupled Fluid/Solid Heat Transfer Computation for Turbine Discs
,” ASME Paper No. 2001-GT-0205.
5.
Okita
,
Y.
, and
Yamawaki
,
S.
, 2002, “
Conjugate Heat Transfer Analysis of Turbine Rotor-Stator Systems
,”
ASME
Paper No. GT2002-30615 .
6.
Mirzamoghadam
,
A.
, and
Xiao
,
Z.
, 2002, “
Flow and Heat Transfer in an Industrial Rotor-Stator Rim Sealing Cavity
,”
J. Eng. Gas Turbines Power
124
(
1
), pp.
125
132
.
7.
Illingworth
,
J.
,
Hills
,
N.
, and
Barnes
,
C.
, 2005, “
3D Fluid-Solid Heat Transfer Coupling of an Aero Engine Pre-Swirl System
,”
ASME
Paper No. GT2005-68939.
8.
Sun
,
Z.
,
Chew
,
J.
,
Hills
,
N.
,
Volkov
,
K.
, and
Barnes
,
C.
, 2010, “
Efficient Finite Element Analysis/Computational Fluid Dynamics Coupling for Engineering Applications
,”
J. Turbomach.
,
132
, p.
031016
.
9.
Amirante
,
D.
, and
Hills
,
N.
, 2010, “
Thermo-Mechanical FEA/CFD Coupling of an Interstage Seal Cavity Using Torsional Spring Analogy
,”
ASME
Paper No. GT2010-22684.
10.
Anderson
,
D.
, 1965, “
Iterative Procedures for Nonlinear Integral Equations
,”
J. Assoc. Comput. Mach.
,
12
, pp.
547
560
.
11.
Patankar
,
S.
, 1980,
Numerical Heat Transfer and Fluid Flow
,
McGraw-Hill,
New York
.
12.
Bohn
,
D.
,
Heurer
,
T.
, and
Kusterer
,
K.
, 2003, “
Conjugate Flow and Heat Transfer Investigation of a Turbo-Charger: Part I—Numerical Results
,”
ASME
Paper No. GT2003-38445.
13.
Giles
,
M.
, 1997, “
Stability Analysis of Numerical Interface Conditions in Fluid-Structure Thermal Analysis
,”
Int. J. Numer. Methods Fluids
25
, pp.
421
436
.
14.
Roe
,
B.
,
Haselbacher
,
A.
, and
Geubelle
,
P.
, 2007, “
Stability of Fluid-Structure Thermal Simulations on Moving Grids
,”
Int. J. Numer. Methods Fluids
54
, pp.
1097
1117
.
15.
Lassaux
,
G.
,
Daux
,
S.
, and
Descamps
,
L.
, 2004, “
Conjugate Heat Transfer Analysis of a Tri-Dimensional Turbine Blade Internal Cavity
,” Proceedings of 24th International Congress of Aerospace Sciences, Paper No. ICAS 2004-6.4.5.
16.
Verstraete
,
T.
,
Alsalihi
,
Z.
, and
van den Braembussche
,
R.
, 2007, “
Numerical Study of the Heat Transfer in Micro Gas Turbines
,”
J. Turbomach.
,
29
, pp.
835
841
.
17.
Ganine
,
V.
,
Hills
,
N.
, and
Lapworth
,
B.
, 2012, “
Nonlinear Acceleration of Coupled Fluid-Structure Transient Thermal Problems by Anderson Mixing
,”
Int. J. Numer. Methods Fluids
(in press).
18.
Dixon
,
J.
,
Verdicchio
,
J.
,
Benito
,
D.
,
Karl
,
A.
, and
Tham
,
K.
, 2004, “
Recent Developments in Gas Turbine Component Temperature Prediction Methods, Using Computational Fluid Dynamics and Optimization Tools, in Conjunction With More Conventional Finite Element Analysis Techniques
,”
Proceedings of the Institution of Mechanical Engineers, Part A: J. Power Energy
,
128
(
A4
), pp.
241
255
.
19.
Armstrong
,
I.
, and
Edmunds
,
T.
, 1989, “
Fully Automatic Analysis in the Industrial Environment
,” International Conference on Quality Assurance and Standards, NAFEMS, Hamilton, UK.
20.
Javiya
,
U.
,
Chew
,
J.
,
Hills
,
N.
,
Zhou
,
L.
,
Wilson
,
M.
, and
Lock
,
G.
, 2010, “
CFD Analysis of Flow and Heat Transfer in a Direct Transfer Pre-Swirl System
,”
ASME
Paper No. GT2010-22964.
21.
Moinier
,
P.
, 1999, “
Algorithm Development for an Unstructured Viscous Flow Solver
,”
Ph.D. thesis
,
University of Oxford
,
Oxford, UK
.
You do not currently have access to this content.