There exists a widespread interest in the application of gas turbine power augmentation technologies in both electric power generation and mechanical drive markets, attributable to deregulation in the power generation sector, significant loss in power generation capacity combined with increased electric rates during peak demand period, and need for a proper selection of the gas turbine in a given application. In this study, detailed thermo-economic analyses of various power augmentation technologies, implemented on a selected gas turbine, have been performed to identify the best techno-economic solution depending on the selected climatic conditions. The presented results show that various power augmentation technologies examined have different payback periods. Such a techno-economic analysis is necessary for proper selection of a power augmentation technology.

References

References
2.
Bianchi
,
M.
,
Branchini
,
L.
,
De Pascale
,
A.
,
Melino
,
F.
,
Peretto
,
A.
,
Bhargava
,
R. K.
, and
Chaker
,
M. A.
, 2010, “
Gas Turbine Power Augmentation Technologies: A Systematic Comparative Evaluation Approach
,” ASME Paper No. GT2010-22948.
3.
Chacartegui
,
R.
,
Jimenez-Espadafor
,
F.
,
Sanchez
,
D.
, and
Sanchez
,
T.
, 2008, “
Analysis of Combustion Turbine Inlet Air Cooling Systems Applied to an Operating Cogeneration Power Plant
,”
Energy Convers. Manage.
,
49
, pp.
2130
2141
.
4.
Bhargava
,
R.
, and
Meher-Homji
,
C. B.
, 2005, “
Parametric Analysis of Existing Gas Turbines With Inlet Evaporative and Overspray Fogging
,”
Trans. ASME, J. Eng. Gas Turbines Power
,
127
, pp.
145
158
.
5.
Chaker
,
M.
, and
Meher-Homji
,
C. B.
, 2002, “
Inlet Fogging of Gas Turbine Engines: Climatic Analysis of Gas Turbine Evaporative Cooling Potential of International Locations
,” ASME Paper No. GT2002-30559.
6.
Arsalis
,
A.
, 2008, “
Thermoeconomic Modeling and Parametric Study of Hybrid SOFC—Gas Turbine–Steam Turbine Power Plants Ranging From 1.5 to 10 MWe
,”
J. Power Sources
,
181
, pp.
313
326
.
7.
Thermoflow, Inc.
, 2010,
Thermoflex 20.0
,
Thermoflow, Inc.
,
Southborough, MA
.
8.
De Biasi
,
V.
, 2002,
Air Injected Power Augmentation Validated by Fr7FA Peaker Tests
,
Gas Turbine World
,
Southport, CT
.
9.
Nakhamkin
,
M.
,
Pelini
,
R.
, and
Patel
,
M. I.
, 2003, “
Humid Air Injection Power Augmentation Technology Has Arrived
,” ASME Paper No. GT2003-38977.
10.
Rice
,
I. G.
, 1995, “
Steam Injected Gas Turbine Analysis: Steam Rates
,”
Trans. ASME, J. Eng. Gas Turbines Power
,
117
, pp.
347
353
.
11.
Jonsson
,
M.
, and
Yan
,
J.
, 2005, “
Humidified Gas Turbine—A Review of Proposed and Implemented Cycles
,”
Energy
,
30
, pp.
1013
1078
.
12.
Larson
,
E. D.
, and
Williams
,
R. H.
, 1987, “
Steam Injected Gas Turbines
,”
Trans. ASME, J. Eng. Gas Turbines Power
,
109
, pp.
55
63
.
13.
Poullikkas
,
A.
, 2005, “
An Overview of Current and Future Sustainable Gas Turbine Technologies
,”
Renewable Sustainable Energy Rev.
,
9
, pp
409
443
.
14.
Bhargava
,
R.
,
Meher-Homji
,
C. B.
,
Chaker
,
M. A.
,
Bianchi
,
M.
,
Melino
,
F.
,
Peretto
,
A.
, and
Ingistov
,
S.
, 2007, “
Gas Turbine Fogging Technology: A State-Of-The-Art Review, Part II: Overspray Fogging – Analytical And Experimental Aspects
,”
Trans. ASME, J. Eng. Gas Turbines Power
,
129
, pp.
454
460
.
15.
“UW-Madison Solar Energy Laboratory Homepage,” 2008, University of Wisconsin, Madison, WI, http://sel.me.wisc.edu/http://sel.me.wisc.edu/
16.
“Total Energy: Annual Energy Review,” 2011, US Energy Information Administration, http://205.254.135.7/totalenergy/data/annual/index.cfmhttp://205.254.135.7/totalenergy/data/annual/index.cfm
17.
“Tariffe e condizioni economiche regolate dall’Autorità,” 2012, AEEG—Autorità per l’Energia Elettrica ed il Gas, http://www.autorita.energia.it/it/prezzi.htm#gashttp://www.autorita.energia.it/it/prezzi.htm#gas
You do not currently have access to this content.