Helmholtz resonators are often used in the gas turbine industry for the damping of thermoacoustic instabilities. To prevent thermal destruction, these devices are usually cooled by a purging flow. Since the acoustic velocity inside the neck of the resonator becomes very high already at moderate pressure oscillation levels, hot-gas penetration cannot always be fully avoided. This study extends a well-known nonlinear impedance model to include the influence of hot-gas intrusion into the Helmholtz resonator neck. A time-dependent but spatially averaged density function of the volume flow in the neck is developed. The steady component of this density function is implemented into the nonlinear impedance model to account for the effect of hot-gas intrusion. The proposed model predicts a significant shift in the resonance frequency of the damper towards higher frequencies, depending on the amplitude of the acoustic velocity in the neck and the temperature of the penetrating hot gas. Subsequently, the model is verified by the experimental investigation of two resonance frequencies (86 Hz and 128 Hz) for two hot gas temperatures (1470 K and 570 K) and various pressure oscillation amplitudes. The multimicrophone method, in combination with a microphone flush-mounted in the resonator volume, is used to determine the impedance of the Helmholtz damper. Additionally, a movable ultra-thin thermocouple was used to determine the degree of hot-gas penetration and the change of the mean temperature at various axial positions in the neck. A very good agreement between the model and the experimental data is obtained for all levels of pressure amplitudes and of hot-gas penetration depths. The mean air temperatures in the neck were accurately predicted too.

References

References
1.
Blackman
,
A. W.
, 1960, “
Effect of Nonlinear Losses on the Design of Absorbers for Combustion Instabilities
,”
ARS J.
,
30
, pp.
1022
1028
.
2.
Ingard
,
U.
, 1953, “
On the Theory and Design of Acoustic Resonators
,”
J. Acoust. Soc. Am.
,
25
(
6
), pp.
1037
1061
.
3.
Zinn
,
B.
, 1970, “
A Theoretical Study of Non-Linear Damping by Helmholtz Resonators
,”
J. Sound Vib.
,
13
(
3
), pp.
347
356
.
4.
Bies
,
D. A.
, and
Wilson
,
O. B. J.
, 1957, “
Acoustic Impedance of a Helmholtz Resonator at Very High Amplitude
,”
J. Acoust. Soc. Am.
,
29
(
6
), pp.
711
714
.
5.
Hersh
,
A. S.
,
Walker
,
B. E.
, and
Celano
,
J. W.
, 2003, “
Helmholtz Resonator Impedance Model, Part 1: Nonlinear Behavior
,”
AIAA J.
,
41
, pp.
795
808
.
6.
Keller
,
J. J.
, and
Zauner
,
E.
, 1995, “
On the Use of Helmholtz Resonators as Sound Attenuators
,”
Z. Angew. Math. Phys.
,
46
(
3
), pp.
297
327
.
7.
Bellucci
,
V.
, 2009, “
Modeling and Control of Gas Turbine Thermoacoustic Pulsations
,” Ph.D. thesis, Technische Universität Berlin, Berlin.
8.
Ingard
,
U.
, and
Labate
,
S.
, 1950, “
Acoustic Circulation Effects and the Nonlinear Impedance of Orifices
,”
J. Acoust. Soc. Am.
,
22
(
2
), pp.
211
218
.
9.
Ingard
,
U.
, and
Ising
,
H.
, 1967, “
Acoustic Nonlinearity of an Orifice
,”
J. Acoust. Soc. Am.
,
42
(
1
), pp.
6
17
.
10.
Rupp
,
J.
,
Carrotte
,
J.
, and
Spencer
,
A.
, 2010, “
Interaction Between the Acoustic Pressure Fluctuations and the Unsteady Flow Field Through Circular Holes
,”
J. Eng. Gas Turbines Power
,
132
(
6
), p.
061501
.
11.
Bellucci
,
V.
,
Flohr
,
P.
,
Paschereit
,
C. O.
, and
Magni
,
F.
, 2004, “
On the Use of Helmholtz Resonators for Damping Acoustic Pulsations in Industrial Gas Turbines
,”
J. Eng. Gas Turbines Power
,
126
(
2
), pp.
271
275
.
12.
Disselhorst
,
J. H. M.
, and
van Wijngaarden
,
L.
, 1980, “
Flow in the Exit of Open Pipes During Acoustic Resonance
,”
J. Fluid Mech.
,
99
, pp.
293
319
.
13.
Scarpato
,
A.
,
Tran
,
N.
,
Ducruix
,
S.
, and
Schuller
,
T.
, 2012, “
Modeling the Damping Properties of Perforated Screens Traversed by a Bias Flow and Backed by a Cavity at Low Strouhal Number
,
J. Sound Vib.
,
331
(
2
), pp.
276
290
.
14.
Stow
,
S.
, and
Dowling
,
A. P.
, 2003, “
Modelling of Circumferential Modal Coupling Due to Helmholtz Resonators
,” Proceedings of ASME Turbo Expo 2003, Atlanta, GA, June 16–19,
ASME
Paper No. GT2003-38168.
15.
Rienstra
,
S. W.
, 1983, “
A Small Strouhal-Number Analysis for Acoustic Wave-Jet Flow-Pipe Interaction
,”
J. Sound Vib.
,
86
(
4
), pp.
539
556
.
16.
Zhao
,
D.
,
A’Barrow
,
C.
,
Morgans
,
A. S.
, and
Carrotte
,
J.
, 2009, “
Acoustic Damping of a Helmholtz Resonator With an Oscillating Volume
,”
AIAA J.
,
47
(
7
), pp.
1672
1679
.
17.
Bellucci
,
V.
,
Schuermans
,
B.
,
Nowak
,
D.
,
Flohr
,
P.
, and
Paschereit
,
C. O.
, 2005, “
Thermoacoustic Modeling of a Gas Turbine Combustor Equipped With Acoustic Dampers
,”
J. Turbomach.
,
127
, pp.
372
379
.
18.
Dupère
,
I. D. J.
, and
Dowling
,
A. P.
, 2005, “
The Use of Helmholtz Resonators in a Practical Combustor
,”
J. Eng. Gas Turbines Power
,
127
(
2
), p.
268
.
19.
Kirchhoff
,
G.
, 1868, “
Ueber den Einfluss der Wärmeleitung in einem Gase auf die Schallbewegung
,”
Ann. Phys. Chem.
,
210
(
6
), pp.
177
193
.
20.
Peters
,
M. C. A. M.
,
Hirschberg
,
A.
,
Reijnen
,
A. J.
, and
Wijnands
,
A. P. J.
, 1993, “
Damping and Reflection Coefficient Measurements for an Open Pipe at Low Mach and Low Helmholtz Numbers
,”
J. Fluid Mech.
,
256
, p.
499
.
21.
Helmholtz
,
H.
, 1896, “
Theorie der Luftschwingungen in Röhren mit Offenen Enden
,”
J. Reine Angew. Math.
,
57
(
1
), pp.
1
72
.
22.
Soares
,
C.
, 2008,
Gas Turbines: A Handbook of Air, Land, and Sea Applications
,
Elsevier Butterworth-Heinemann
,
Amsterdam
.
23.
Kleiber
,
M.
, and
Joh
,
R.
, 2006, “
Berechnungsmethoden für Stoffeigenschaften
,” In
VDI-Wärmeatlas
,
Springer
,
Berlin
, pp.
115
144
.
24.
Paschereit
,
C. O.
,
Schuermans
,
B.
, and
Polifke
,
W.
, 2002, “
Measurement of Transfer Matrices and Source Terms of Premixed Flames
,”
J. Eng. Gas Turbines Power
,
124
(
2
), pp.
239
247
.
25.
Elnady
,
T.
, and
Bodén
,
H.
, 2004, “
An Inverse Analytical Method for Extracting Liner Impedance From Pressure Measurements
,” Proceedings of the 10th AIAA/CEAS Aeroacoustics Conference, Manchester, UK, May 10–12, Paper No. AIAA 2004-2836.
26.
Elnady
,
T.
,
Bodén
,
H.
, and
Kontio
,
T.
, 2004, “
Impedance of SDOF Perforated Liners at High Temperatures
,” Proceedings of the 10th AIAA/CEAS Aeroacoustics Conference, Manchester, UK, May 10–12, Paper No. AIAA 2004-2842.
27.
Lieuwen
,
T.
, and
Neumeier
,
Y.
, 2002, “
Nonlinear Pressure-Heat Release Transfer Function Measurements in a Premixed Combustor
,”
Proc. Combust. Inst.
,
29
, pp.
99
105
.
28.
Lechner
,
C.
, and
Bothien
,
M. R.
, 2005, “
Measurement of the Inlet Gas Temperature of a Gas Turbine
,” Proceedings of ASME Turbo Expo 2005, Reno, NV, June 6–9,
ASME
Paper No. GT2005-68138.
You do not currently have access to this content.