Environmental regulations are continuously pushing lower emissions with an impact on the combustion process in gas turbines (GTs). As a consequence, GT combustors operate in very lean regimes (i.e., at relatively low temperature) to reduce NOx formation. Unfortunately, stabilization becomes a challenge for these lean premixed flames. The extremely unsteady dynamics of swirl stabilized flames present crucial issues and this investigation aim is understanding the interaction of swirl stabilization with large coherent fluctuations inherent to vortex breakdown. The investigation utilizes a simplified cylindrical model combustor consisting of a premixing tube discharging in a larger combustion chamber. Fuel and swirling air are separately injected in the mixing tube so that a partially premixed swirling jet encounters vortex breakdown and allows the partially premixed flame to stabilize. The aforementioned extreme sensitivity of lean partially premixed flames challenges any investigation either for measuring, simulating, or post-processing the case of interest. In this paper, the problem is addressed using large eddy simulation (LES) and planar laser induced fluorescence. The LES data are used to follow the fuel air/mixing along with the fuel combustion evidencing large-scale dynamics. These dynamics are further investigated using proper orthogonal decomposition to identify the role of the premixing stage and of the precessing vortex core in the flame behavior.

References

References
1.
Lefebvre
,
A. H.
, 1995, “
The Role of Fuel-Preparation in Low-Emission Combustion
,”
ASME J. Eng. Gas Turbines Power
,
117
, pp.
617
654
.
2.
Lucca-Negro
,
O.
and
O’Doherty
,
T.
, 2001, “
Vortex Breakdown: A Review
,”
Prog. Energy Combust. Sci.
,
27
, pp.
431
481
.
3.
Syred
,
N.
, 2006, “
A Review of Oscillation Mechanisms and the Role of the Precessing Vortex Core (PVC) in Swirl Combustion Systems
,”
Prog. Energy Combust. Sci.
,
32
, pp.
93
161
.
4.
Anacleto
,
P. M.
,
Fernandes
,
E. C.
,
Heitor
,
M. V.
, and
Shtork
,
S. I.
, 2003, “
Swirl Flow Structure and Flame Characteristics in a Model Lean Premixed Combustor
,”
Combust. Sci. Technol.
,
175
, pp.
1369
1388
.
5.
Galley
,
D.
,
Ducruix
,
S.
,
Lacas
,
F.
, and
Veynante
,
D.
, 2011, “
Mixing and Stabilization Study of a Partially Premixed Swirling Flame Using Laser Induced Fluorescence
,”
Combust. Flame
,
158
, pp.
155
171
.
6.
Paschereit
,
C. O.
,
Gutmark
,
E.
, and
Weisenstein
,
W.
, 1999, “
Coherent Structures in Swirling Flows and Their Role in Acoustic Combustion Control
,”
Phys. Fluids
,
11
(
9
), pp.
2667
2678
.
7.
Selle
,
L.
,
Lartigue
,
G.
,
Poinsot
,
T.
,
Koch
,
R.
,
Schildmacher
,
K.-U.
,
Krebs
,
W.
,
Prade
,
B.
,
Kaufmann
,
P.
, and
Veynante
,
D.
, 2004, “
Compressible Large Eddy Simulation of Turbulent Combustion in Complex Geometry on Unstructured Meshes
,”
Combust. Flame
,
137
, pp.
489
505
.
8.
Duwig
,
C.
and
Fuchs
,
L.
, 2007, “
Large Eddy Simulation of Vortex Breakdown/Flame Interaction
,”
Phys. Fluids
,
19
, p.
075103
.
9.
Duwig
,
C.
and
Fuchs
,
L.
, 2007, “
Study of Flame Stabilization in a Swirling Combustor Using a New Flamelet Formulation
,”
Combust. Sci. Technol.
,
177
, pp.
1485
1510
.
10.
Sommerer
,
Y.
,
Galley
,
D.
,
Poinsot
,
T.
,
Ducruix
,
S.
,
Lacas
,
F.
, and
Veynante
,
D.
, 2004, “
Large Eddy Simulation and Experimental Study of Flashback and Blow-Off in a Lean Partially Premixed Swirled Burner
,”
J. Turbul.
,
5
, p.
37
.
11.
Poinsot
,
T.
and
Veynante
,
D.
, 2005,
Theoretical and Numerical Combustion
,
Edwards
,
Ann Arbor, MI
.
12.
Sagaut
,
P.
,
Comte
,
P.
, and
Ducros
,
F.
, 2000, “
Filtered Subgrid-Scale Models
,”
Phys. Fluids
,
12
, pp.
233
236
.
13.
Grinstein
,
F. F.
and
Kailasanath
,
K.
, 1994, “
Three Dimensional Numerical Simulations of Unsteady Reactive Square Jets
,”
Combust. Flame
,
100
, pp.
2
10
.
14.
Duwig
,
C.
,
Nogenmyr
,
K.-J.
,
Chan
,
C.-K.
, and
Dunn
,
M. J.
2011, “
Large Eddy Simulations of a Piloted Lean Premix Jet Flame Using Finite-Rate Chemistry
,”
Combust. Theory Modell.
,
15
(
4
), pp.
537
568
.
15.
Colin
,
O.
Ducros
,
F.
,
Veynante
,
D.
, and
Poinsot
,
T.
, 2000, “
A Thickened Flame Model for Large Eddy Simulations of Turbulent Premixed Combustion
,”
Phys. Fluids
,
12
, pp.
1843
1863
.
16.
Sen
,
B. A.
and
Menon
,
S.
, 2010, “
Linear Eddy Mixing Based Tabulation and Artificial Neural Networks for Large Eddy Simulations of Turbulent Flames
,”
Combust. Flame
,
157
, pp.
62
74
.
17.
Duwig
,
C.
,
Fuchs
,
L.
,
Siewert
,
P.
,
Griebel
,
P.
, and
Boscheck
,
E.
, 2007, “
Study of a Confined Turbulent Jet: Influence of Combustion and Pressure on the Flow
,”
AIAA J.
,
45
(
3
), pp.
624
639
.
18.
Pitsch
,
H.
and
Duchamp de Lageneste
,
L.
, 2003, “
Large Eddy Simulation of Premixed Turbulent Combustion Using a Level-Set Approach
,”
Proc. Combust. Inst.
,
29
, pp.
2001
2008
.
19.
Duwig
,
C.
and
Fureby
,
C.
, 2007, “
Large Eddy Simulation of Unsteady Lean Stratified Premixed Combustion
,”
Combust. Flame
,
151
(
12
), pp.
85
103
.
20.
Fiorina
,
B.
,
Vicquelin
,
R.
,
Auzillon
,
P.
,
Darabiha
,
N.
,
Gicquel
,
O.
, and
Veynante
,
D.
, 2010, “
A Filtered Tabulated Chemistry Model for LES of Premixed Combustion
,”
Combust. Flame
,
157
(
3
), pp.
465
475
.
21.
Boger
,
M.
,
Veynante
,
D.
,
Boughanem
,
H.
, and
Trouve
,
A.
, 1998, “
Direct Numerical Simulation Analysis of Flame Surface Density Concept for Large Eddy Simulation of Turbulent Premixed Combustion
,”
27th International Symposium on Combustion
,
The Combustion Institute
,
Pittsburgh
, pp.
917
927
.
22.
Giacomazzi
,
E.
and
Battaglia
,
V.
, 2004, “
The Coupling of Turbulence and Chemistry in a Premixed Bluff-Body Flame as Studied by LES
,”
Combust. Flame
,
134
(
4
), pp.
320
335
.
23.
Raman
,
S.
and
Pitsch
,
H.
, 2007, “
A Consistent LES/Filtered Density Function Formulation for the Simulation of Turbulent Flames With Detailed Chemistry
,”
Proc. Combust. Inst.
,
31
, pp.
1711
1719
.
24.
Duwig
,
C.
and
Fuchs
,
L.
, 2008, “
Large Eddy Simulation of a H2/N2 Lifted Flame in a Vitiated Co-Flow
,”
Combust. Sci. Technol.
,
180
, pp.
453
480
.
25.
Jones
,
W. P.
and
Lindstedt
,
R. P.
, 1988, “
Global Reaction Schemes for Hydrocarbon Combustion
,”
Combust. Flame
,
73
(
3
), pp.
233
249
.
26.
Gicquel
,
L.
and
Roux
,
A.
, 2011, “
LES to Ease Understanding of Complex Unsteady Combustion Features of Ramjet Burners
,”
Flow Turbul. Combust.
,
87
(
2–3
), pp.
449
472
.
27.
Nguyen
,
P. D.
,
Vervisch
,
L.
,
Subramanian
,
V.
, and
Domingo
,
P.
, 2010, “
Multidimensional Flamelet Generated Manifolds for Partially Premixed Combustion
,”
Combust. Flame
,
157
, pp.
43
61
.
28.
Weller
,
H. G.
,
Tabor
,
G.
,
Jasak
,
H.
, and
Fureby
,
C.
, 1997, “
A Tensorial Approach to Computational Continuum Mechanics Using Object-Oriented Techniques
,”
Comput. Phys.
,
12
, pp.
620
631
.
29.
Issa
,
R. I.
, 1986, “
Solution of the Implicitly Discretised Fluid Flow Equations by Operator-Splitting
,”
J. Comput. Phys.
,
62
, pp.
40
65
.
30.
Sweby
,
P. K.
, 1984, “
High Resolution Schemes Using Flux Limiters for Hyperbolic Conservation Laws
,”
SIAM (Soc. Ind. Appl. Math.) J. Numer. Anal.
,
21
, pp.
995
1011
.
31.
Berkooz
,
G.
,
Holmes
,
P.
, and
Lumley
,
J. L.
, 1991, “
The Proper Orthogonal Decomposition in the Analysis of Turbulent Flows
,”
Annu. Rev. Fluid Mech.
,
25
, p.
539
.
32.
Sirovich
,
L.
, 1987, “
Turbulence and the Dynamics of Coherent Structures. Part 1: Coherent Structures
”,
Q. Appl. Math.
,
45
(
3
), pp.
561
571
.
33.
Borée
,
J.
, 2003, “
Extended Proper Orthogonal Decomposition: A Tool to Analyse Correlated Events in Turbulent Flows
,”
Exp. Fluids
,
35
, pp.
188
192
.
34.
Duwig
,
C.
and
Iudiciani
,
P.
, 2010, “
Extended Proper Orthogonal Decomposition for Analysis of Unsteady Flames
,”
Flow Turbul. Combust.
,
84
(
1
), pp.
25
47
.
35.
Duwig
,
C.
and
Gutmark
,
E.
, 2008, “
Large Scale Rotating Motions in Multiple Jets
,”
Phys. Fluids
,
20
, p.
041705
.
You do not currently have access to this content.