The growing need to increase the competitiveness of industrial systems continuously requires a reduction of maintenance costs, without compromising safe plant operation. Therefore, forecasting the future behavior of a system allows planning maintenance actions and saving costs, because unexpected stops can be avoided. In this paper, four different methodologies are applied to predict gas turbine behavior over time: Linear and Nonlinear Regression, One Parameter Double Exponential Smoothing, Kalman Filter and Bayesian Forecasting Method. The four methodologies are used to provide a prediction of the time when a threshold value will be exceeded in the future, as a function of the current trend of the considered parameter. The application considers different scenarios which may be representative of the trend over time of some significant parameters for gas turbines. Moreover, the Bayesian Forecasting Method, which allows the detection of discontinuities in time series, is also tested for predicting system behavior after two consecutive trends. The results presented in this paper aim to select the most suitable methodology that allows both trending and forecasting as a function of data trend over time, in order to predict time evolution of gas turbine characteristic parameters and to provide an estimate of the occurrence of a failure.

References

References
1.
Bettocchi
,
R.
,
Pinelli
,
M.
,
Spina
,
P. R.
,
Venturini
,
M.
, and
Sebastianelli
,
S.
, 2001, “
A System for Health State Determination of Natural Gas Compression Gas Turbines
,” ASME Paper No. 2001-GT-223.
2.
Jaw
,
L. C.
, 2005, “
Recent Advancements in Aircraft Engine Health Management (EHM) Technologies and Recommendations for the Next Step
,” ASME Paper No. GT2005-68625.
3.
Therkorn
,
D.
, 2005, “
Remote Monitoring and Diagnostic for Combined-Cycle Power Plants
,” ASME Paper No. GT2005-68710.
4.
Davison
,
C.
, and
Drummond
,
C.
, 2009, “
Application of Cost Matrices and Cost Curves to Enhance Diagnostic Health Management Metrics for Gas Turbine Performance
,” ASME Paper No. GT2009-59630.
5.
Schneider
,
E.
,
Demirciogiu
,
S.
,
Franco
,
S.
, and
Therkorn
,
D.
, 2009, “
Analysis of Compressor On-Line Washing to Optimize Gas Turbine Power Plant Performance
,” ASME Paper No. GT2009-59356.
6.
Stamatis
,
A.
,
Mathioudakis
,
K.
, and
Papailiou
,
K. D.
, 1990, “
Adaptive Simulation of Gas Turbine Performance
,”
ASME J. Eng. Gas Turbines Power
,
112
, pp.
168
175
.
7.
Bettocchi
,
R.
, and
Spina
,
P. R.
, 1999, “
Diagnosis of Gas Turbine Operating Conditions by Means of the Inverse Cycle Calculation
,” ASME Paper No. 99-GT-185.
8.
Pinelli
,
M.
Venturini
,
M.
, 2002, “
Application of Methodologies to Evaluate the Health State of Gas Turbines in a Cogenerative Combined Cycle Power Plant
,” ASME Paper No. GT-2002-30248.
9.
Doel
,
D. L.
, 2003, “
Development of Baselines, Influence Coefficients and Statistical Inputs for Gas Path Analysis
,”
Gas Turbine Monitoring & Fault Diagnosis (von Karman Institute Lecture Series 2003-01)
, Jan. 13–17,
von Karman Institute
,
Belgium
.
10.
Li
,
Y. G.
, 2004, “
Gas Turbine Diagnosis Using a Fault Isolation Enhanced GPA
,” ASME Paper No. GT2004-53571.
11.
Pinelli
,
M.
, and
Venturini
,
M.
, 2001, “
Operating State Historical Data Analysis to Support Gas Turbine Malfunction Detection
,” ASME IMECE(2001)/AES-23665.
12.
Li
,
Y. G.
, and
Nilkitsaranont
,
P.
, 2009, “
Gas Turbine Performance Prognostic for Condition-Based Maintenance
,”
Appl. Energy
,
86
, pp.
2152
2161
.
13.
Meher-Homji
,
C. B.
,
Chaker
,
M.
, and
Bromley
,
A. F.
, 2009, “
The Fouling of Axial Flow Compressors—Causes, Effects, Susceptibility and Sensitivity
,” ASME Paper No. GT2009-59239.
14.
Roemer
,
M. J.
,
Byington
,
C. S.
,
Kacprzynski
,
G. J.
, and
Vachtsevanos
,
G.
, 2006, “
An Overview of Selected Prognostic Technologies with Application to Engine Health Management
,” ASME Paper No. GT2006-90677.
15.
Lipowsky
,
H.
,
Staudacher
,
S.
,
Bauer
,
M.
, and
Schmidt
,
K. J.
, 2010, “
Application of Bayesian Forecasting to Change Detection and Prognosis of Gas Turbine Performance
,”
ASME J. Eng. Gas Turbines Power
,
132
(
3
), p.
031602
.
16.
Zaluski
,
M.
,
Letourneau
,
S.
,
Bird
,
J.
, and
Yang
,
C.
, 2010, “
Developing Data Mining-Based Prognostic Models for CF-18 Aircraft
,” ASME Paper No. GT2010-22944.
17.
Bryg
,
D. J.
,
Mink
,
G.
, and
Jaw
,
L. C.
, 2008, “
Combining Lead Functions and Logistic Regression for Predicting Failures on an Aircraft Engine
,” ASME Paper No. GT2008-50118.
18.
Sekhon
,
R.
,
Bassily
,
H.
, and
Wagner
,
J.
, 2008, “
A Comparison of Two Trending Strategies for Gas Turbine Performance Prediction
,”
ASME J. Eng. Gas Turbines Power
,
130
(
7
), p.
041601
.
19.
Puggina
,
N.
, and
Venturini
,
M.
, 2011, “
Development of a Statistical Methodology for Gas Turbine Prognostics
,” ASME Paper No. GT2011-45708.
20.
Borguet
,
S.
, and
Leonard
,
O.
, 2008, “
A Generalized Likelihood Ratio Test for Adaptive Gas Turbine Health Monitoring
,” ASME Paper No. GT2008-50117.
21.
Bowerman
,
B. L.
, and
O’Connell
,
R. T.
, 1993,
Forecasting and Time Series–An Applied Approach (Duxbury Classic Series)
,
Duxbury Press
,
Pacific Grove, CA
.
22.
Hastie
,
T.
,
Tibshirani
,
R.
, and
Friedman
,
J.
, 2001,
The elements of Statistical Learning—Data Mining, Inference, Prediction
,
Springer-Verlag
,
Berlin
.
23.
Welch
,
G.
Bishop
,
G.
, 2001, “
An Introduction to the Kalman Filter
,”
Proceedings of ACM SIGGRAPH (2001) Conference
, August 12–17,
Los Angeles, CA
.
24.
Haykin
,
S. S.
, 2001,
Kalman Filtering and Neural Networks
,
Wiley
,
New York
.
25.
Zarchan
,
P.
Musoff
,
H.
, 2005,
Fundamentals of Kalman Filtering: A Practical Approach
,
AIAA
,
Reston, VA
.
26.
Grewal
,
M. S.
, and
Andrews
,
A. P.
, 2008,
Kalman Filtering Theory and Practice Using MATLAB
,
Wiley
,
New York
.
27.
Provost
,
M.-J.
, 2003, “
Kalman Filtering Applied to Time Series Analysis
,”
Proceedings of the IEE Seminar on Aircraft Airborne Condition Monitoring
, May 14,
Gloucester, UK
.
28.
Volponi
,
A. J.
, and
Urban
,
L. A.
, 1992, “
Mathematical Methods of Relative Engine Performance Diagnostics
”, SAE Trans., 101, J. Aerospace, Technical Paper No. 922048.
29.
Volponi
,
A. J.
,
DePold
,
H.
,
Ganguli
,
R.
, and
Daguang
,
C.
, 2000, “
The Use of Kalman Filter and Neural Network Methodologies in Gas Turbine Performance Diagnostics: A Comparative Study
,” ASME Paper No. 00-GT-547.
30.
Doel
,
D. L.
, 1994, “
TEMPER—A Gas Path Analysis Tool for Commercial Jet Engines
,” ASME Paper No. 92-GT-315.
31.
West
,
M.
, and
Harrison
,
J.
, 1999,
Bayesian Forecasting and Dynamic Models
,
Springer
,
Berlin
.
32.
Kim
,
N. H.
,
Pattabhiraman
,
S.
, and
Houck
,
L. A.
, 2010, “
Bayesian Approach for Fatigue Life Prediction from Field Data
ASME Paper No. GT2010-23780.
33.
Muller
,
M.
,
Staudacher
,
S.
,
Friedl
,
W. H.
,
Kohler
,
R.
, and
Weisschuh
,
M.
, 2010, “
Probabilistic Engine Maintenance Modeling for Varying Environmental and Operating Conditions
,” ASME Paper No. GT2010-22548.
You do not currently have access to this content.