This paper describes an analysis of the unsteady flow field in swirl flames subjected to transverse acoustic waves. This work is motivated by transverse instabilities in annular gas turbine combustors, which are a continuing challenge for both power generation and aircraft applications. The unsteady flow field that disturbs the flame consists not only of the incident transverse acoustic wave, but also longitudinal acoustic fluctuations and vortical fluctuations associated with underlying hydrodynamic instabilities of the base flow. We show that the acoustic and vortical velocity fluctuations are of comparable magnitude. The superposition of these waves leads to strong interference patterns in the velocity field, a result of the significantly different wave propagation speeds and axial phase dependencies of these two disturbance sources. Vortical fluctuations originate from the convectively unstable shear layers and absolutely unstable swirling jet. We argue that the unsteady shear layer induced fluctuations are the most dynamically significant, as they are the primary source of flame fluctuations. We also suggest that vortical structures associated with vortex breakdown play an important role in controlling the time-averaged features of the central flow and flame spreading angle, but do not play an important role in disturbing the flame at low disturbance amplitudes. This result has important implications not only for our understanding of the velocity disturbance field in the flame region, but also for capturing important physics in future modeling efforts.

References

References
1.
Ducruix
,
S.
,
Schuller
,
T.
,
Durox
,
D.
, and
Candel
,
S.
, 2003, “
Combustion Dynamics and Instabilities: Elementary Coupling and Driving Mechanisms
,”
J. Propul. Power
,
19
(
5
), pp.
722
734
.
2.
Rayleigh
,
L.
, 1896,
The Theory of Sound
, Vol.
2
,
2 ed.
,
Macmillian
,
London
.
3.
Lieuwen
,
T.
, and
Yang
,
V.
, 2006,
Combustion Instabilities in Gas Turbine Engines: Operational Experience, Fundamental Mechanisms, and Modeling
, (Progress in Astronautics and Aeronautics Series),
F. K.
Lu
, ed.,
AIAA
,
Washington, D.C
.
4.
Culick
,
F. E. C.
and
V.
Yang
, 1992, “
Prediction of the Stability of Unsteady Motions in Solid Propellant Rocket Motors
,” Nonsteady Burning and Combustion Stability of Solid Propellants, p.
719
.
5.
Harrje
,
D. T.
, and
F. H.
Reardon
, 1972, Liquid Propellant Rocket Combustion Instability, Scientific and Technical Information Office, National Aeronautics and Space Administration.
6.
Price
,
E. W.
, 1992, “
Solid Rocket Combustion Instability—An American Historical Account
,” Nonsteady Burning and Combustion Stability of Solid Propellants, pp.
1
16
.
7.
Rogers
,
D. E.
, and
F. E.
Marble
, 1956, “
A Mechanism for High Frequency Oscillations in Ramjet Combustors and Afterburners
,”
Jet Propul.
,
26
(
1
), pp.
456
462
.
8.
Kaskan
,
W. E.
, and
A. E.
Noreen
, 1955, “
High-Frequency Oscillations of a Flame Held by a Bluff Body
,”
ASME Trans
.
77
(
6
), pp.
855
891
.
9.
Elias
,
I.
, 1959,
Acoustical Resonances Produced by Combustion of a Fuel-Air Mixture in a Rectangular Duct
,
J. Acoust. Soc. Am.
,
31
, p.
296
.
10.
Smith
,
K.
, and
Blust
,
J.
, 2005, “
Combustion Instabilities in Industrial Gas Turbines: Solar Turbines’ Experience
,”
Combustion Instabilities in Gas Turbine Engines
,
T.
Lieuwen
and
V.
Yang
, eds.,
AIAA
,
Washington, D.C.
, pp.
29
42
.
11.
Krebs
,
W.
,
Bethke
,
S.
,
Lepers
,
J.
,
Flohr
,
P.
, and
Prade
,
B.
, 2005,
Thermoacoustic Design Tools and Passive Control: Siemens Power Generation Approaches
,
Combustion Instabilities in Gas Turbine Engines
,
T.
Lieuwen
and
V.
Yang
, eds.,
AIAA
,
Washington, D.C.
, pp.
89
112
.
12.
Sewell
,
J.
, and
Sobieski
,
P.
, 2005,
“Monitoring of Combustion Instabilities: Calpine’s Experience,”
Combustion Instabilities in Gas Turbine Engines
,
Lieuwen
,
T.
and
Yang
,
V.
, eds. (
AIAA
,
Washington, D.C.
), pp.
147
162
.
13.
Hield
,
P. A.
,
Brear
,
M. J.
, and
Jin
,
S. H.
, 2009, “
Thermoacoustic Limit Cycles in a Premixed Laboratory Combustor With Open and Choked Exits
,”
Combustion Flame
,
156
(
9
), pp.
1683
1697
.
14.
Paschereit
,
C. O.
,
Gutmark
,
E.
, and
Weisenstein
,
W.
, 2000,
Excitation of Thermoacoustic Instabilities by Interaction of Acoustics and Unstable Swirling Flow
,”
AIAA J.
38
(
6
), pp.
1025
1034
.
15.
Cohen
,
J.
, and
Proscia
,
W.
, 2005,
“Characterization and Control of Aeroengine Combustion Instability: Pratt & Whitney and NASA Experience,”
Combustion Instabilities in Gas Turbine Engines
,
Lieuwen
,
T.
, and
Yang
,
V.
, eds.,
AIAA
,
Washington, D.C.
, pp.
113
146
.
16.
Hauser
,
M.
,
Lorenz
,
M.
, and
Sattelmayer
,
T.
, 2010, “
Influence of Transversal Acoustic Excitation of the Burner Approach Flow on the Flame Structure
,”
ASME Turbo Expo
,
Glasgow, Scotland
.
17.
Staffelbach
,
G. L.
,
Gicquel
,
Y. M.
,
Boudier
,
G.
, and
Poinsot
,
T.
, 2009,
“Large Eddy Simulation of Self Excited Azimuthal Modes in Annular Combustors,”
Proc. Combustion Inst.
,
32
(
2
), pp.
2909
2916
.
18.
Wolf
,
P.
,
Staffelbach
,
G.
,
Roux
,
A.
,
Gicquel
,
L.
,
Poinsot
,
T.
, and
Moureau
,
V.
, 2009, “
Massively Parallel LES of Azimuthal Thermo-Acoustic Instabilities in Annular Gas Turbines
,”
C. R. Mec.
,
337
, p.
385
394
.
19.
Stow
,
S. R.
, and
Dowling
,
A. P.
, 2004, “
Low-Order Modelling of Thermoacoustic Limit Cycles
,”
ASME Turbo Expo
,
Vienna, Austria
.
20.
Acharya
,
V.
,
Shreekrishna
,
Shin D.
,
, and
Lieuwen
,
T.
, 2009, “
Response of Premixed Swirling Flames to Transverse Excitation
,” in
2009 Fall Technical Meeting Organized by the Eastern States Section of the Combustion Institute
,
College Park, MD
.
21.
Ducruix
,
S.
,
Rey
,
C.
, and
Candel
,
S.
, 2005, “
A Method for the Transverse Modulation of Reactive Flows With Application to Combustion Instability
,”
Combustion Theory Modell.
,
9
(
1
), pp.
5
22
.
22.
O’Connor
,
J.
, and
Lieuwen
,
T.
, 2011, “
Disturbance Field Characteristics of a Transversely Excited Burner
,”
Combust. Sci. Technol.
,
183
(
5
), pp.
427
443
.
23.
Lee
,
H. J.
,
Kim
,
K. T.
,
Lee
,
J. G.
,
Quay
,
B. D.
, and
Santavicca
,
D. A.
, 2009, “
An Experimental Study on the Coupling of Combustion Instability Mechanisms in a Lean Premixed Gas Turbine Combustor
,”
ASME Turbo Expo
,
Orlando, FL
.
24.
Birbaud
,
A. L.
,
Ducruix
,
S.
,
Durox
,
D.
, and
Candel
,
S.
, 2008, “
The Nonlinear Response of Inverted “V” Flames to Equivalence Ratio Nonuniformities
,”
Combust. Flame
,
154
(
3
), pp.
356
367
.
25.
Sattelmayer
,
T.
, 2003, “
Influence of the Combustor Aerodynamics on Combustion Instabilities From Equivalence Ratio Fluctuations
,
J. Eng. Gas Turbines Power.
,
125
, p.
11
.
26.
Poinsot
,
T. J.
,
Trouve
,
A. C.
,
Veynante
,
D. P.
,
Candel
,
S. M.
, and
Esposito
,
E. J.
, 2006, “
Vortex-driven Acoustically Coupled Combustion Instabilities
,”
J. Fluid Mech.
,
177
, pp.
265
292
.
27.
Preetham
,
H.
,
Santosh
, and
Lieuwen
,
T.
, 2008, “
Dynamics of Laminar Premixed Flames Forced by Harmonic Velocity Disturbances
,”
J. Propuls. Power.
,
24
(
6
), pp.
1390
1402
.
28.
Schadow
,
K. C.
, and
Gutmark
,
E.
, 1992, “
Combustion Instability Related to Vortex Shedding in Dump Combustors and Their Passive Control
,”
Prog. Energy Combust. Sci.
,
18
(
2
), pp.
117
132
.
29.
Ghoniem
,
A.
,
Park
,
F. S.
,
Wachsman
,
A.
,
Annaswamy
,
A.
,
Wee
,
D.
, and
Altay
,
H. M.
, 2005, “
Mechanism of Combustion Dynamics in a Backward-Facing Step Stabilized Premixed Flame
,”
Proc. Combust. Inst.
,
30
(
2
), pp.
1783
1790
.
30.
Hemchandra
,
S.
,
Peters
,
N.
, and
Lieuwen
,
T.
, 2011, “
Heat Release Response of Acoustically Forced Turbulent Premixed Flames—Role of Kinematic Restoration
,”
Proc. Combust. Inst.
,
33
(
1
), pp.
1609
1617
.
31.
McManus
,
K.
,
Vandsburger
,
R. U.
, and
Bowman
,
C. T.
, 1990, “
Combustor Performance Enhancement Through Direct Shear Layer Excitation
,”
Combust. Flame
,
82
(
1
), pp.
75
92
.
32.
Palies
,
P.
,
Durox
,
D.
,
Schuller
,
T.
, and
Candel
,
S.
, 2010,
The Combined Dynamics of Swirler and Turbulent Premixed Swirling Flames
,”
Combust.
Flame,
157
, pp.
1698
1717
.
33.
Komarek
,
T.
, and
Polifke
,
W.
, 2009, “
Impact of Swirl Fluctuations on the Flame Response of a Perfectly Premixed Swirl Burner
,”
ASME Turbo Expo
,
Orlando, FL
.
34.
Gentemann
,
A.
,
Hirsch
,
C.
,
Kunze
,
K.
,
Kiesewetter
,
F.
,
Sattelmayer
,
T.
, and
Polifke
,
W.
, 2004, “
Validation of Flame Transfer Function Reconstruction for Perfectly Premixed Swirl Flames
,”
ASME Turbo Expo
,
Vienna, Austria
.
35.
Hirsch
,
C.
,
Fanaca
,
D.
,
Reddy
,
P.
,
Polifke
,
W.
, and
Sattelmayer
,
T.
, 2005, “
Influence of the Swirler Design on the Flame Transfer Function of Premixed Flames
,”
ASME Turbo Expo
,
Reno, NV
.
36.
Yang
,
V.
, and
Anderson
,
W. E.
, 1995,
“Liquid Rocket Engine Combustion Instability,”
Progress in Astronautics and Aeronautics
, Vol.
169
,
P.
Zarchan
, ed.,
AIAA
,
Washington, D.C
.
37.
Mery
,
Y.
,
Ducruix
,
S.
,
Scouflaire
,
P.
, and
Candel
,
S.
, 2009, “
Injection Coupling with High Amplitude Transverse Modes: Experimentation and Simulation
,”
C.R. Méc.
,
337
(
6–7
), pp.
426
437
.
38.
Sohn
,
C. H.
, and
Park
,
I.
, 2007, “
Acoustic Tuning of Gas-Liquid Scheme Injectors for Acoustic Damping in a Combustion Chamber of a Liquid Rocket Engine
,”
J. Sound Vibration
,
304
(
3-5
), pp.
793
810
.
39.
Rodriguez
,
J.
,
Graham
,
J.
,
Leyva
,
I.
, and
Talley
,
D.
, “
Effect of Variable Phase Transverse Acoustic Fields on Coaxial Jet Forced Spread Angles
,”
47th AIAA Aerospace Sciences Meeting
, 2009,
Orlando, FL
.
40.
Bellows
,
B. D.
,
Bobba
,
M. K.
,
Forte
,
A.
,
Seitzman
,
J. M.
, and
Lieuwen
,
T.
, 2007, “
Flame Transfer Function Saturation Mechanisms in a Swirl-Stabilized Combustor
,”
Proc. Combust. Inst.
,
31
(
2
), pp.
3181
3188
.
41.
Kim
,
D. J.
,
Lee
,
G.
,
Quay
,
B. D.
,
Santavicca
,
D. A.
,
Kim
,
K.
, and
Srinivasan
,
S.
, 2010, “
Effect of Flame Structure on the Flame Transfer Function in a Premixed Gas Turbine Combustor
,”
J. Eng. Gas Turbines Power
,
132
, p.
021502
.
42.
Shin
,
D. H.
,
Shanbhogue
,
S. J.
, and
Lieuwen
,
T.
, 2008, “
Premixed Flame Kinematics in an Axially Decaying, Harmonically Oscillating Vorticity Field
,”
44th AIAA Joint Propulsion Conference
,
Hartford, CT
.
43.
Lieuwen
,
T.
, 2003, “
Modeling Premixed Combustion-Acoustic Wave Interactions: A Review
,”
J. Propul. Power
,
19
(
5
), p.
765
781
.
44.
Durox
,
D.
,
Schuller
,
T.
,
Noiray
,
N.
, and
Candel
,
S.
, 2009, “
Experimental Analysis of Nonlinear Flame Transfer Functions for Different Flame Geometries
,”
Proc. Combust. Inst.
,
32
, pp.
1391
1398
.
45.
Freitag
,
E.
,
Konle
,
H.
,
Lauer
,
M.
,
Hirsch
,
C.
, and
Sattelmayer
,
T.
, 2006,
“Pressure Influence on the Flame Transfer Function of a Premixed Swirling Flame,”
ASME Turbo Expo
,
Barcelona, Spain
.
46.
Shanbhogue
,
S.
,
Shin
,
D. H.
,
Hemchandra
,
S.
,
Plaks
,
D.
, and
Lieuwen
,
T.
, 2009, “
Flame Sheet Dynamics of Bluff-Body Stabilized Flames During Longitudinal Acoustic Forcing
,”
Proc. Combust. Inst.
,
32
(
2
), pp.
1787
1794
.
47.
Emerson
,
B. U.
,
Mondragon
,
M.
,
Brown
,
C. T.
,
Acharya
,
V.
,
Shin
,
D.-H.
,
McDonell
,
V. G.
, and
Lieuwen
,
T.
, 2011, “
Measurements and Analysis of Bluff Body Flame Response to Transverse Excitation
,”
AIAA 49th Aerospace Sciences Meeting and Exhibit
,
Orlando, FL
.
48.
Rusak
,
Z.
,
Kapila
,
A. K.
, and
J. J.
Choi
, 2002, “
Effect of Combustion on Near-Critical Swirling Flow
,”
Combust. Theory Model.
,
6
(
4
), pp.
625
645
.
49.
Wang
,
S.
,
Hsieh
,
S. Y.
, and
Yang
,
V.
, 2005,
Unsteady Flow Evolution in Swirl Injector With Radial Entry. I. Stationary Conditions
,”
Phys. Fluids
,
17
, p.
045106
.
50.
Wang
,
S.
, and
Yang
,
V.
, 2005, “
Unsteady Flow Evolution in Swirl Injectors With Radial Entry. II. External Excitations
,”
Phys. Fluids
,
17
, p.
045107
.
51.
Khalil
,
S.
,
Hourigan
,
K.
, and
Thompson
,
M. C.
, 2006,
Response of Unconfined Vortex Breakdown to Axial Pulsing
,”
Phys. Fluids
,
18
, p.
038102
.
52.
Stone
,
C.
, and
Menon
,
S.
, 2002, “
Swirl Control of Combustion Instabilities in a Gas Turbine Combustor
,”
Proc. Combust. Inst.
,
29
(
1
), pp.
155
160
.
53.
García-Villalba
,
M.
, and
Fröhlich
,
J.
, 2006, “
LES of a Free Annular Swirling Jet-Dependence of Coherent Structures on a Pilot Jet and the Level of Swirl
,”
Int. J. Heat Fluid Flow
27
(
5
), pp.
911
923
.
54.
Lu
,
X.
,
Wang
,
S.
,
Sung
,
H. G.
,
Hsieh
,
S. Y.
, and
Yang
,
V.
, 2005, “
Large-Eddy Simulations of Turbulent Swirling Flows Injected Into a Dump Chamber
,”
J. Fluid Mech.
,
527
, pp.
171
195
.
55.
Bechert
,
D.
, and
Pfizenmaier
,
E.
, 1975, “
On Wavelike Perturbations in a Free Jet Travelling Faster Than the Mean Flow in the Jet
,”
J. Fluid Mech.
,
72
(
2
), pp.
341
352
.
You do not currently have access to this content.