Urea-selective catalytic reduction (SCR) catalysts are regarded as the leading NOx aftertreatment technology to meet the 2010 NOx emission standards for on-highway vehicles running on heavy duty diesel engines. However, issues such as low NOx conversion at low temperature conditions still exist due to various factors, including incomplete urea thermolysis, inhibition of SCR reactions by hydrocarbons, and H2O. We have observed a noticeable reduction in the standard SCR reaction efficiency at low temperature with increasing water content. We observed a similar effect when hydrocarbons are present in the stream. This effect is absent under fast SCR conditions where NONO2 in the feed gas. As a first step in understanding the effects of such inhibition on SCR reaction steps, kinetic models that predict the inhibition behavior of H2O and hydrocarbons on NO oxidation are presented in the paper. A one-dimensional SCR model was developed based on the conservation of species equations and was coded as a C-language S-function and implemented in MATLAB/SIMULINK environment. NO oxidation and NO2 dissociation kinetics were defined as a function of the respective adsorbate’s storage in the Fe–zeolite SCR catalyst. The corresponding kinetic models were then validated on temperature ramp tests that showed good match with the test data. Such inhibition models will improve the accuracy of the model based control design for integrated diesel particulate filter-SCR aftertreatment systems.

1.
Diesel Particulate Filters
, www.dieselnet.comwww.dieselnet.com
2.
Lietti
,
L.
,
Nova
,
I.
,
Tronconi
,
E.
, and
Forzatti
,
P.
, 1998, “
Transient Kinetic Study of the SCR De-NOx Reaction
,”
Catal. Today
0920-5861,
45
(
1–4
), pp.
85
92
.
3.
Tronconi
,
E.
, and
Forzatti
,
P.
, 1992, “
Adequacy of Lumped Parameter Models for SCR Reactors With Monolith Structure
,”
AIChE J.
0001-1541,
38
(
2
), pp.
201
210
.
4.
Heck
,
R.
, 1999, “
Catalytic Abatement of Nitrogen Oxides—Stationary Application
,”
Catal. Today
0920-5861,
53
(
4
), pp.
519
523
.
5.
Nova
,
I.
,
Lietti
,
L.
,
Tronconi
,
E.
, and
Forzatti
,
P.
, 2001, “
Transient Response Method Applied to the Kinetic Analysis of the De-NOx SCR Reaction
,”
Chem. Eng. Sci.
0009-2509,
56
(
4
), pp.
1229
1237
.
6.
Tronconi
,
E.
,
Lietti
,
L.
,
Forzatti
,
P.
, and
Malloggi
,
S.
, 1996, “
Experimental and Theoretical Investigation of the Dynamics of the SCR-DeNOx Reaction
,”
Chem. Eng. Sci.
0009-2509,
51
(
11
), pp.
2965
2970
.
7.
Koebel
,
M.
,
Elsener
,
M.
, and
Kleemann
,
M.
, 2000, “
Urea-SCR: A Promising Technique to Reduce NOx Emissions From Automotive Diesel Engines
,”
Catal. Today
0920-5861,
59
(
3–4
), pp.
335
345
.
8.
Schar
,
C.
,
Onder
,
C.
,
Geering
,
H.
, and
Elsener
,
M.
, 2003, “
Control of a Urea SCR Catalytic Converter System for a Mobile Heavy Duty Diesel Engine
,”
Proceedings of the SAE 2003 World Congress
, Detroit, MI, Paper No. 2003-01-0776.
9.
Chatterjee
,
D.
,
Burkhardt
,
T.
,
Wiebel
,
M.
,
Nova
,
I.
,
Grossale
,
A.
, and
Tronconi
,
E.
, 2007, “
Numerical Simulation of Zeolite and V-Based SCR Catalytic Converters
,”
Proceedings of the SAE 2007 World Congress
, Detroit, MI, Paper No. 2007-01-1136.
10.
Piazzesi
,
G.
,
Devadas
,
M.
,
Kröcher
,
O.
,
Elsener
,
M.
, and
Wokaun
,
A.
, 2006, “
Isocyanic Acid Hydrolysis Over Fe-ZSM5 in Urea-SCR
,”
Catal. Commun.
1566-7367,
7
(
8
), pp.
600
603
.
11.
Cavataio
,
G.
,
Girard
,
J.
,
Patterson
,
J.
,
Montreuil
,
C.
,
Cheng
,
Y.
, and
Lambert
,
C.
, 2007, “
Performance Characterization of Cu/Zeolite and Fe/Zeolite Catalysts
,”
DOE Cross-Cut Lean Exhaust Emissions Reduction Simulations (CLEERS) Workshop
.
12.
Olsson
,
L.
,
Sjovall
,
H.
, and
Blint
,
R.
, 2009, “
Detailed Kinetic Modeling of NOx Adsorption and NO Oxidation Over Cu-ZSM5
,”
Appl. Catal., B
0926-3373,
87
(
3–4
), pp.
200
210
.
13.
Sjovall
,
H.
,
Blint
,
R.
, and
Olsson
,
L.
, 2009, “
Detailed Kinetic Modeling of NH3 and H2O Adsorption and NH3 Oxidation Over Cu-ZSM5
,”
J. Phys. Chem. C
1932-7447,
113
(
4
), pp.
1393
1405
.
14.
Devadas
,
M.
,
Krocher
,
O.
,
Elsener
,
M.
,
Wokaun
,
A.
,
Soger
,
N.
,
Pfeifer
,
M.
,
Demel
,
Y.
, and
Mussmann
,
L.
, 2006, “
Influence of NO2 on the Selective Catalytic Reduction of NO With NH3 Over Fe-ZSM5
,”
Appl. Catal., B
0926-3373,
67
(
3–4
), pp.
187
196
.
15.
Devarakonda
,
M.
,
Parker
,
G.
,
Johnson
,
J.
, and
Strots
,
V.
, 2009, “
Model Based Control System Design in a Urea-SCR Aftertreatment System Based on NH3 Sensor Feedback
,”
International Journal of Automotive Technology
,
10
(
6
), pp.
653
662
.
16.
Devarakonda
,
M.
,
Parker
,
G.
,
Johnson
,
J.
,
Strots
,
V.
, and
Santhanam
,
S.
, 2008, “
Model Based Estimation and Control System Design in a Urea-SCR Aftertreatment System
,”
SAE International Journal of Fuels and Lubricants
1946-3952,
1
(
1
), pp.
646
661
.
17.
Schwidder
,
M.
,
Heikens
,
S.
,
De Toni
,
A.
,
Geisler
,
S.
,
Berndt
,
M.
,
Bruckner
,
A.
, and
Grunert
,
W.
, 2008, “
The Role of NO2 in the Selective Catalytic Reduction of Nitrogen Oxides Over Fe-ZSM5 Catalysts: Active Sites for the Conversion of NO and of NO/NO2 Mixtures
,”
J. Catal.
0021-9517,
259
(
1
), pp.
96
103
.
18.
Girard
,
J.
,
Snow
,
R.
,
Cavataio
,
G.
, and
Lambert
,
C.
, 2008, “
Influence of Hydrocarbon Storage on the Durability of SCR Catalysts
,”
Proceedings of the SAE 2008 World Congress
, Detroit, MI, Paper No. 2008-01-0767.
19.
Montreuil
,
C.
, and
Lambert
,
C.
, 2008, “
The Effect of Hydrocarbons on the Selective Catalytic Reduction of NOx Over Low and High Temperature Catalyst Formulations
,”
Proceedings of the SAE 2008 World Congress
, Detroit, MI, Paper No. 2008-01-1030.
20.
Tonkyn
,
R.
,
Tran
,
D.
,
Devarakonda
,
M.
, and
Herling
,
D.
, “
Steady State and Thermal Transient Investigation of Toluene Inhibition of NO Oxidation on a Fe-Zeolite Urea-SCR Catalyst
,”
Chem. Eng. Commun.
0098-6445, in review.
21.
Devarakonda
,
M.
,
Tonkyn
,
R.
, and
Herling
,
D.
, 2010, “
Hydrocarbon Effect on a Fe–Zeolite Urea-SCR Catalyst: An Experimental and Modeling Study
,”
Proceedings of the SAE 2010 World Congress
, Detroit, MI, Paper No. 2010-01-1171, SP 2287.
22.
Laing
,
P.
,
Shane
,
M.
,
Son
,
S.
,
Adamczyk
,
A.
, and
Li
,
P.
, 1999, “
A Simplified Approach to Modeling Exhaust System Emissions: SIMTWC
,”
Proceedings of the SAE 1999 World Congress
, Detroit, MI, Paper No. 1999-01-3476.
23.
Fuller
,
E.
,
Schettler
,
P.
, and
Giddings
,
G.
, 1966, “
New Method for Prediction of Binary Gas Phase Diffusion Coefficients
,”
Ind. Eng. Chem.
0019-7866,
58
(
5
), pp.
18
27
.
25.
Nova
,
I.
,
Ciardelli
,
C.
,
Tronconi
,
E.
,
Chatterjee
,
D.
, and
Bandl-Konrad
,
B.
, 2006, “
NH3-SCR of NO Over a V-Based Catalyst: Low-T Redox Kinetics With NH3 Inhibition
,”
AIChE J.
0001-1541,
52
(
9
), pp.
3222
3233
.
26.
Bhatia
,
D.
,
Clayton
,
R.
,
Harold
,
M.
, and
Balakotaiah
,
V.
, 2009, “
A Global Kinetic Model for NO2 Storage and Reduction on Pt/BaO/Al2O3 Monolithic Catalysts
,”
Catal. Today
0920-5861,
147
(
1
), pp.
S250
S256
.
27.
Erbil
,
H.
, and
Avci
,
Y.
, 2002, “
Simultaneous Determination of Toluene Coefficient in Air From Thin Tube Evaporation and Sessile Drop Evaporation on a Solid Surface
,”
Langmuir
0743-7463,
18
(
13
), pp.
5113
5119
.
You do not currently have access to this content.