Pressure losses between the compressor outlet and the turbine inlet are a major issue of overall efficiency and system stability for a solid oxide fuel cell/micro gas turbine (MGT) hybrid power plant system. The goal of this work is the detailed analysis of the effects of additional pressure losses on MGT performance in terms of steady-state and transient conditions. The experiments were performed using the micro gas turbine test rig at the German Aerospace Centre in Stuttgart using a butterfly control valve to apply additional pressure loss. This paper reports electric power and pressure characteristics at steady-state conditions as well as a new surge limit for this Turbec T100 micro gas turbine test rig. Furthermore, the effects of additional pressure loss on the compressor surge margin are quantified and a linear relation between the relative surge margin and additional pressure loss is shown. For transient variation of pressure loss at constant turbine speed, time delays are presented and an instability issue of the commercial gas turbine controller is discussed. Finally, bleed-air blow-off and reduction of the turbine outlet temperature are introduced as methods of increasing the surge margin. It is quantified that both methods have a substantial effect on the compressor surge margin. Furthermore, a comparison between both methods is given in terms of electric power output.

1.
Veyo
,
S. E.
,
Schockling
,
L. A.
,
Dederer
,
J. T.
,
Gillett
,
J. E.
, and
Lundberg
,
W. L.
, 2000, “
Tubular Solid Oxide Fuel Cell/Gas Turbine Hybrid Cycle Power Systems-Status
,” ASME Paper No. 200-GT 550.
2.
Veyo
,
S. E.
,
Lundberg
,
W. L.
,
Vora
,
S. D.
, and
Litzinger
,
K. P.
, 2003, “
Tubular SOFC Hybrid Power System Status
,” ASME Paper No. GT2003-38943.
3.
Tucker
,
D.
,
Liese
,
E.
,
VanOsdol
,
J.
,
Lawson
,
L.
, and
Gemmen
,
R. S.
, 2005, “
Fuel Cell Gas Turbine Hybrid Simulation Facility Design
,” ASME Paper No. IMECE2002-33207.
4.
Tucker
,
D.
,
Lawson
,
L.
,
VanOsdol
,
J.
,
Kislear
,
J.
, and
Akinbobuyi
,
A.
, 2006, “
Examination of Ambient Pressure Effects on Hybrid Solid Oxide Fuel Cell Turbine System Operation Using Hardware Simulation
,” ASME Paper No. GT2006-91291.
5.
Pascenti
,
M.
,
Ferrari
,
M. L.
,
Magistri
,
L.
, and
Massardo
,
A. F.
, 2007, “
Micro Gas Turbine Based Test Rig for Hybrid System Emulation
,” ASME Paper No. GT2007-27075.
6.
Ferrari
,
M. L.
,
Pascenti
,
M.
,
Magistri
,
L.
, and
Massardo
,
A. F.
, 2007, “
A General Purpose Test Rig for Innovative Cycles Based on a 100 kWe Micro Gas Turbine
,”
IGTC2007 Tokyo
, Paper No. TS-015.
7.
Lim
,
T.
,
Song
,
R.
,
Shin
,
D.
,
Yang
,
J.
,
Jung
,
H.
,
Vinke
,
I.
, and
Yang
,
S.
, 2008, “
Operating Characteristics of a 5 kW Class Anode-Supported Planar SOFC Stack for a Fuel Cell/Gas Turbine Hybrid System
,”
Int. J. Hydrogen Energy
0360-3199,
3
, pp.
1076
1083
.
8.
Hohloch
,
M.
,
Widenhorn
,
A.
,
Lebküchner
,
D.
,
Panne
,
T.
, and
Aigner
,
M.
, 2008, “
Micro Gas Turbine Test Rig for Hybrid Power Plant Application
,” ASME Paper No. GT2008-50443.
9.
Panne
,
T.
,
Widenhorn
,
A.
, and
Aigner
,
M.
, 2008, “
Steady State Analysis of a SOFC/GT Hybrid Power Plant Test Rig
,” ASME Paper No. GT2008-50288.
10.
Panne
,
T.
,
Widenhorn
,
A.
,
Boyde
,
J.
,
Matha
,
D.
,
Abel
,
V.
, and
Aigner
,
M.
, 2007, “
Thermodynamic Process Analyses of SOFC-GT Hybrid Systems
,” AIAA Paper No. 2007-4833.
11.
Kimijima
,
S.
, and
Kasagi
,
N.
, 2002, “
Performance Evaluation of Gas Turbine-Fuel Cell Hybrid Micro Generation System
,” ASME Paper No. GT-2002-30111.
12.
Kroll
,
F.
,
Sandor
,
I.
, and
Staudacher
,
S.
, 2009, “
System Dynamics of a Hardware in the Loop Simulation of a Hybrid Power Plant
,” ASME Paper No. GT2009-59859.
13.
Kroll
,
F.
,
Nielsen
,
A.
, and
Staudacher
,
S.
, 2008, “
Transient Performance and Control System Design of Solid Oxide Fuel Cell/Gas Turbine Hybrids
,” ASME Paper No. GT2008-50232.
14.
Ferrari
,
M.
,
Liese
,
E.
,
Tucker
,
D.
,
Lawson
,
L.
,
Traverso
,
A.
, and
Massardo
,
A.
, 2007, “
Transient Modeling of the NETL Hybrid Fuel Cell/Gas Turbine Facility and Experimental Validation
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
129
, pp.
1012
1019
.
15.
Hohloch
,
M.
,
Widenhorn
,
A.
,
Zanger
,
J.
, and
Aigner
,
M.
, 2010, “
Experimental Characterization of a Micro Gas Turbine Test Rig
,” ASME Paper No. GT2010-22799.
16.
Hohloch
,
M.
,
Sadanandan
,
R.
,
Widenhorn
,
A.
,
Meier
,
W.
, and
Aigner
,
M.
, 2010, “
OH∗ Chemiluminescence and OH PLIF Measurements in a Micro Gas Turbine Combustor
,” ASME Paper No. GT2009-22800.
17.
Hohloch
,
M.
,
Widenhorn
,
A.
,
Zanger
,
J.
, and
Aigner
,
M.
, 2009, “
OH Chemiluminescence Measurements in a Micro Gas Turbine Combustor
,”
VDI, Proceedings of 24th German Flame Day, Combustion and Furnaces
, Vol.
2056
, pp.
539
542
.
18.
Bronstein
,
I.
, and
Semendjajew
,
K.
, 1969,
Taschenbuch der Mathematik
,
6th ed.
,
Verlag Harri Deutsch
,
Zürich and Frankfurt/Main
.
19.
Tucker
,
D.
,
Lawson
,
L.
, and
Gemmen
,
R. S.
, 2005, “
Characterization of Air Flow Management and Control in a Fuel Cell Turbine Hybrid Power System Using Hardware Simulation
,” ASME Paper No. PWR2005-50127.
20.
Ferrari
,
M.
,
Pascenti
,
M.
,
Magistri
,
L.
, and
Massardo
,
A.
, 2008, “
Emulation of Hybrid System Start-Up and Shutdown Phases With a Micro Gas Turbine Based Test Rig
,” ASME Paper No. GT2008-50617.
You do not currently have access to this content.