Most of the techniques developed to date for module performance analysis rely on steady-state measurements from a single operating point to evaluate the level of deterioration of an engine. One of the major difficulties associated with this estimation problem comes from its underdetermined nature. It results from the fact that the number of health parameters exceeds the number of available sensors. Among the panel of remedies to this issue, a few authors have investigated the potential of using data collected during a transient operation of the engine. A major outcome of these studies is an improvement in the assessed health condition. The present study proposes a framework that formalizes this observation for a given class of input signals. The analysis is performed in the frequency domain, following the lines of system identification theory. More specifically, the mean-squared estimation error is shown to drastically decrease when using transient input signals. This study is conducted with an engine model representative of a commercial turbofan.

1.
Volponi
,
A. J.
, 2003, “
Foundation of Gas Path Analysis (Part I and II)
,”
Gas Turbine Condition Monitoring and Fault Diagnosis
(
von Karman Institute Lecture Series No. 1
),
Karman Institute
,
Rhode-Saint-Genèse, Belgium
.
2.
Urban
,
L. A.
, 1972, “
Gas Path Analysis Applied to Engine Condition Monitoring
,”
AIAA/SAE Eighth Joint Propulsion Specialist Conference
, Paper No. AIAA-72-1082, New Orleans, LA.
3.
Doel
,
D. L.
, 1994, “
An Assessment of Weighted-Least-Squares-Based Gas Path Analysis
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
116
, pp.
366
373
.
4.
Dewallef
,
P.
,
Mathioudakis
,
K.
, and
Léonard
,
O.
, 2004, “
On-Line Aircraft Engine Diagnostic Using a Soft-Constrained Kalman Filter
,”
ASME
Paper No. GT2004-53539.
5.
Gulati
,
A.
,
Taylor
,
D.
, and
Singh
,
R.
, 2001, “
Multiple Operating Point Analysis Using Genetic Algorithm Optimisation for Gas Turbine Diagnostics
,”
15th International Symposium on Air Breathing Engines
, Bangalore, India, Paper No. 1139.
6.
Grönstedt
,
T.
, 2002, “
Identifiability in Multi-Point Gas Turbine Parameter Estimation Problems
,”
ASME
Paper No. GT2002-30020.
7.
Merrington
,
G.
, 1989, “
Fault Diagnosis in Gas Turbine Engines From Transient Data
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
111
, pp.
237
243
.
8.
Cue
,
R. W.
, and
Muir
,
D. E.
, 1991, “
Engine Performance Monitoring and Troubleshooting Techniques for the CF-18 Aircraft
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
113
(
1
), pp.
11
19
.
9.
Luppold
,
R. H.
,
Gallops
,
G. W.
,
Kerr
,
L. J.
, and
Roman
,
J. R.
, 1989, “
Estimating In-Flight Engine Performance Variations Using Kalman Filter Concepts
,”
25th AIAA/ASME/SAE/ASEE Joint Propulsion Conference
, Paper No. AIAA-89-2584, Monterey, CA.
10.
Grönstedt
,
T.
, 2005, “
Least Squares Based Transient Nonlinear Gas Path Analysis
,”
ASME
Paper No. GT2005-68717.
11.
Kamboukos
,
Ph.
, and
Mathioudakis
,
K.
, 2007, “
Turbofan Engine Health Assessment by Combining Steady and Transient State Aerothermal Data
,”
Seventh European Conference on Turbomachinery
, Paper No. 137, Athens, Greece.
12.
Ogaji
,
S.
,
Li
,
Y. G.
,
Sampath
,
S.
, and
Singh
,
R.
, 2003, “
Gas Path Fault Diagnosis of a Turbofan Engine From Transient Data Using Artificial Neural Networks
,”
ASME
Paper No. GT2003-38423.
13.
Sampath
,
S.
,
Li
,
Y. G.
,
Ogaji
,
S. O. T.
, and
Singh
,
R.
, 2003, “
Fault Diagnosis of a Two Spool Turbo-Fan Engine Using Transient Data: A Genetic Algorithm Approach
,”
ASME
Paper No. GT2003-38300.
14.
Simon
,
D.
, and
Simon
,
D. L.
, 2003, “
Aircraft Turbofan Engine Health Estimation Using Constrained Kalman Filtering
,”
ASME
Paper No. GT2003-38584.
15.
Borguet
,
S.
,
Dewallef
,
P.
, and
Léonard
,
O.
, 2005, “
On-Line Transient Engine Diagnostics in a Kalman Filtering Framework
,”
ASME
Paper No. GT2005-68013.
16.
Sugiyama
,
N.
, 1994, “
Derivation of System Matrices From Nonlinear Dynamic Simulation of Jet Engines
,”
J. Guid. Control Dyn.
0731-5090,
17
(
6
), pp.
1320
1326
.
17.
Volponi
,
A. J.
, 2008, “
Enhanced Self Tuning On-Board Real-Time Model (eSTORM) for Aircraft Engine Performance Health Tracking
,”
NASA
Report No. CR-2008-215272.
18.
Ljung
,
L.
, 1999,
System Identification, Theory for the User
(
Information and System Sciences Series
),
2nd ed.
,
Prentice-Hall
,
London
.
19.
Henriksson
,
M.
,
Borguet
,
S.
,
Léonard
,
O.
, and
Grönstedt
,
T.
, 2007, “
On Inverse Problems in Turbine Engine Parameter Estimation
,”
ASME
Paper No. GT2007-27756.
20.
Evans
,
C.
,
Borrell
,
A.
, and
Rees
,
D.
, 1999, “
Testing and Modeling Gas Turbines Using Multisine Signals and Frequency-Domain Techniques
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
121
, pp.
451
457
.
21.
Evans
,
C.
,
Fleming
,
P. J.
,
Hill
,
D. C.
,
Norton
,
J. P.
,
Pratt
,
I.
,
Rees
,
D.
, and
Rodriguez-Vazquez
,
K.
, 2001, “
Application of System Identification Techniques to Aircraft Gas Turbine Engines
,”
Control Eng. Pract.
0967-0661,
9
, pp.
135
148
.
22.
Rao
,
C. R.
, 1973,
Linear Statistical Inference and Its Applications
,
Wiley
,
New York
.
23.
Rojas
,
C. R.
,
Welsh
,
J. S.
,
Goodwin
,
G. C.
, and
Feuer
,
A.
, 2007, “
Robust Optimal Experiment Design for System Identification
,”
Automatica
0005-1098,
43
(
6
), pp.
993
1008
.
24.
Stamatis
,
A.
,
Mathioudakis
,
K.
,
Ruiz
,
J.
, and
Curnock
,
B.
, 2001,
Real-Time Engine Model Implementation for Adaptive Control and Performance Monitoring of Large Civil Turbofans
,”
ASME
Paper No. 2001-GT-0362.
25.
Forssell
,
U.
, and
Ljung
,
L.
, 1999, “
Closed-Loop Identification Revisited
,”
Automatica
0005-1098,
35
(
7
), pp.
1215
1241
.
26.
Reberga
,
L.
,
Henrion
,
D.
,
Bernussou
,
J.
, and
Vary
,
F.
, 2005, “
LPV Modelling of a Turbofan Engine
,”
16th IFAC World Congress on Automatic Control
, Vol.
16-1
, Prague, Czech Republic.
You do not currently have access to this content.