The subcooled boiling heat transfer and the steady-state critical heat fluxes (CHFs) in a short SUS304-tube with twisted-tape insert are systematically measured for mass velocities (G=401613,850kg/m2s), inlet liquid temperatures (Tin=285.82363.96K), outlet pressures (Pout=764.76889.02kPa), and exponentially increasing heat input (Q=Q0exp(t/τ), τ=8.5s) by the experimental water loop comprised of a multistage canned-type circulation pump controlled by an inverter. The SUS304 test tube of inner diameter (d=6mm), heated length (L=59.5mm), effective length (Leff=49.1mm), L/d(=9.92), Leff/d(=8.18), and wall thickness (δ=0.5mm) with average surface roughness (Ra=3.18μm) is used in this work. The SUS304 twisted tape with twist ratio, y(=H/d=(pitchof180degrotation)/d), of 3.39 is used. The relation between inner surface temperature and heat flux for the SUS304-tube with the twisted-tape insert are clarified from nonboiling to CHF. The subcooled boiling heat transfer for SUS304-tube with the twisted-tape insert is compared with our empty SUS304-tube data and the values calculated by our and other workers’ correlations for the subcooled boiling heat transfer. The influences of the twisted-tape insert and the swirl velocity on the subcooled boiling heat transfer and the CHFs are investigated into details and the widely and precisely predictable correlations of the subcooled boiling heat transfer and the CHFs for turbulent flow of water in the SUS304-tube with twisted-tape insert are given based on the experimental data. The correlations can describe the subcooled boiling heat transfer coefficients and the CHFs obtained in this work within 25 to +15% difference.

1.
Gambill
,
W. R.
,
Bundy
,
R. D.
, and
Wansbrough
,
R. W.
, 1961, “
Heat Transfer, Burnout, and Pressure Drop for Water in Swirl Flow Tubes with Internal Twisted Tapes
,”
Chem. Eng. Prog., Symp. Ser.
0069-2948,
57
(
32
), pp.
127
137
.
2.
Blatt
,
T. A.
, and
Adt
,
R. R.
, 1963, “
The Effects of Twisted Tape Swirl Generators on the Heat Transfer Rate and Pressure Drop of Boiling Freon 11 and Water
,” ASME Paper No. ASME-63-WA-42.
3.
Lopina
,
R. F.
, and
Bergles
,
A. E.
, 1973, “
Subcooled Boiling of Water in Tape Generated Swirl Flow
,”
ASME J. Heat Transfer
0022-1481,
95
, pp.
281
283
.
4.
Celata
,
G. P.
, 1993, “
Recent Achievements in the Thermal Hydraulics of High Heat Flux Components in Fusion Reactors
,”
Exp. Therm. Fluid Sci.
0894-1777,
7
, pp.
263
278
.
5.
Tong
,
W.
,
Bergles
,
A. E.
, and
Jensen
,
M. K.
, 1996, “
Critical Heat Flux and Pressure Drop of Subcooled Flow Boiling in Small-Diameter Tubes With Twisted-Tape Inserts
,”
J. Enhanced Heat Transfer
1065-5131,
3
(
2
), pp.
95
108
.
6.
Kabata
,
Y.
,
Nakajima
,
R.
, and
Shioda
,
K.
, 1996, “
Enhancement of Critical Heat Flux for Subcooled Flow Boiling of Water in Tubes With a Twisted Tape and With a Helically Coiled Wire
,”
Proceedings of the ASME-JSME Fourth International Conference on Nuclear Engineering
, pp.
639
646
.
7.
Inasaka
,
F.
, and
Nariai
,
H.
, 1996, “
Evaluation of Subcooled Critical Heat Flux Correlations for Tubes With and Without Internal Twisted Tapes
,”
Nucl. Eng. Des.
0029-5493,
163
, pp.
225
239
.
8.
Manglik
,
R. M.
, and
Bergles
,
A. E.
, 2002, “
Swirl Flow Heat Transfer and Pressure Drop With Twisted-Tape Inserts
,”
Adv. Heat Transfer
0065-2717,
36
, pp.
183
266
.
9.
Bejan
,
A.
, and
Kraus
,
A. D.
, 2003,
Heat Transfer Handbook
,
Wiley
,
New York
, p.
1029
.
10.
Hata
,
K.
, and
Masuzaki
,
S.
, 2010, “
Influence of Heat Input Waveform on Transient Critical Heat Flux of Subcooled Water Flow Boiling in a Short Vertical Tube
,”
Nucl. Eng. Des.
0029-5493,
240
, pp.
440
452
.
11.
Hata
,
K.
, and
Masuzaki
,
S.
, 2009, “
Subcooled Boiling Heat Transfer in a Short Vertical SUS304-Tube at Liquid Reynolds Number Range 5.19×104 to 7.43×105
,”
Nucl. Eng. Des.
0029-5493,
239
, pp.
2885
2907
.
12.
Hata
,
K.
, and
Masuzaki
,
S.
, 2010, “
Subcooled Boiling Heat Transfer for Turbulent Flow of Water in a Short Vertical Tube
,”
ASME J. Heat Transfer
0022-1481,
132
, p.
011501
.
13.
Cole
,
C.
, 1979,
Homogeneous and Heterogeneous Nucleation in Boiling Phenomena
, Vol.
1
,
S.
van Stralen
and
R.
Cole
, eds.,
Hemisphere
,
New York
, p.
71
.
14.
Kutateladze
,
S. S.
, 1959, “
Heat Transfer in Condensation and Boiling
,” USAEC Report No. AEC-tr-3770.
15.
Zuber
,
N.
, 1959, “
Hydrodynamic Aspects of Boiling Heat Transfer
,” USAEC Report No. AECU-4439.
16.
Hata
,
K.
, and
Masuzaki
,
S.
, 2009, “
Twisted-Tape-Induced Swirl Flow Heat Transfer and Pressure Drop in a Short Circular Tube Under Velocities Controlled
,”
Proceedings of the 13th International Topical Meeting on Nuclear Reactor Thermal Hydraulics
, Kanazawa City, Ishikawa Prefecture, Japan, Paper No. N13P1114, pp.
1
15
.
17.
Brodkey
,
R. S.
, and
Hershey
,
H. C.
, 1988,
Transport Phenomena
,
McGraw-Hill
,
New York
, p.
568
.
18.
Sato
,
T.
, and
Matsumura
,
H.
, 1963, “
On the Conditions of Incipient Subcooled-Boiling With Forced Convection
,”
Bull. JSME
0021-3764,
7
, pp.
392
398
.
19.
Bergles
,
A. E.
, and
Rohsenow
,
W. M.
, 1964, “
The Determination of Forced-Convection Surface-Boiling Heat Transfer
,”
ASME J. Heat Transfer
0022-1481,
86
, pp.
365
372
.
20.
McAdams
,
W. H.
,
Kennel
,
W. E.
,
Minden
,
C. S. L.
,
Carl
,
R.
,
Picornell
,
P. M.
, and
Dew
,
J. E.
, 1949, “
Heat Transfer at High Rates to Water With Surface Boiling
,”
Ind. Eng. Chem.
0019-7866,
41
(
9
), pp.
1945
1953
.
21.
Jens
,
W. H.
, and
Lottes
,
P. A.
, 1951, “
Analysis of Heat Transfer Burnout, Pressure Drop and Density Data for High Pressure Water
,” Report No. ANL-4627.
22.
Rohsenow
,
W. M.
, 1952, “
A Method of Correlating Heat-Transfer Data for Surface Boiling of Liquids
,”
Trans. ASME
0097-6822,
74
, pp.
969
976
.
23.
Thom
,
J. R. S.
,
Walker
,
W. M.
,
Fallon
,
T. A.
, and
Reising
,
G. F. S.
, 1966, “
Boiling in Subcooled Water During Flow Up Heated Tubes or Annuli
,”
Proc. Inst. Mech. Eng.
0020-3483,
180
, pp.
226
246
.
24.
Lienhard
,
J. H.
, 1976, “
Correlation of Limiting Liquid Superheat
,”
Chem. Eng. Sci.
0009-2509,
31
, pp.
847
849
.
You do not currently have access to this content.