Most of the recent subchannel analysis codes are based on a multifluid model, and an accurate evaluation of the constitutive equations in the model is essential. In order to get an accurate interfacial friction force in two-phase bubble flows, experimental data on drag coefficient and interfacial area concentration have been obtained for air-water flows in a 2×1 rod channel simplifying a boiling water nuclear reactor fuel rod bundle. In order to know the effects of liquid properties on the data, the temperature of the test water was changed from 18°C to 50°C. The data are compared with the existing correlations reported in literatures. As a result, the semitheoretical correlation of Hibiki and Ishii (2001, “Interfacial Area Concentration in Steady Fully-Developed Bubbly Flow,” Int. J. Heat Mass Transfer, 44, pp. 3443–3461) was found to give the best prediction against the present interfacial area concentration data. The correlation of Delhaye and Bricard (1994, “Interfacial Area in Bubbly Flow: Experimental Data and Correlations,” Nucl. Eng. Des., 151, pp. 65–77) also gave a reasonably good prediction if their correlation was modified by incorporating liquid property effects. As for the drag coefficient, no correlation exists, which can predict the present data well. Therefore, we developed a new correlation, including three dimensionless numbers, i.e., bubble capillary number, Morton number, and Eötvös number. The correlation predicted the data of Liu et al. (2008, “Drag Coefficient in One-Dimensional Two-Group Two-Fluid Model,” Int. J. Heat Fluid Flow, 29, pp. 1402–1410) as well as the present data well.

1.
Ninokata
,
H.
,
Sadatomi
,
M.
,
Okawa
,
T.
,
Serizawa
,
A.
,
Mishima
,
K.
,
Koshizuka
,
S.
,
Hotta
,
A.
,
Kudo
,
Y.
,
Shirakawa
,
N.
,
Yamamoto
,
Y.
,
Morooka
,
S.
, and
Nishida
,
K.
, 2003, “
Development of Generalized Boiling Transition Model Applicable for Wide Variety of Fuel Rod Bundle Geometries—Basic Strategy and Numerical Approaches
,”
Proceedings of GENES4/ANP2003
, Kyoto, Japan.
2.
Ishii
,
M.
, 1975,
Thermo-Fluid Dynamic Theory of Two-Phase Flow
,
Eyrolles
,
Paris
.
3.
Ishii
,
M.
, and
Mishima
,
K.
, 1984, “
Two-Fluid Model and Hydrodynamic Constitutive Relations
,”
Nucl. Eng. Des.
0029-5493,
82
, pp.
107
126
.
4.
Saito
,
T.
,
Hughes
,
E. D.
, and
Carbon
,
M. W.
, 1978, “
Multi-Fluid Modeling of Annular Two-Phase Flow
,”
Nucl. Eng. Des.
0029-5493,
50
, pp.
225
271
.
5.
Ninokata
,
H.
,
Aritomi
,
M.
,
Anegawa
,
T.
,
Sato
,
Y.
,
Sadatomi
,
M.
,
Mishima
,
K.
,
Nishida
,
K.
,
Yamamoto
,
Y.
,
Morooka
,
S.
,
Yabushita
,
Y.
,
Sou
,
A.
,
Kamo
,
H.
, and
Kusuno
,
S.
, 1997, “
Development of the NASCA Code for Prediction of Transient BT and Post BT Phenomena in BWR Rod Bundles
,”
Proceedings of the Fourth International Seminar on Subchannel Analysis-ISSCA-4
, Tokyo, Japan, pp.
231
265
.
6.
Welter
,
K. B.
,
Kelly
,
J. M.
, and
Bajorek
,
S. M.
, 2006, “
Assessment of TRACE Code Using Rod Bundle Heat Transfer Mixture Level-Swell Tests
,”
Proceedings of the 14th International Conference on Nuclear Engineering, ICONE14
, Paper No. ICONE14-89756.
7.
Kawahara
,
A.
,
Kano
,
K.
,
Sadatomi
,
M.
, and
Sakuma
,
S.
, 2004, “
Flow Redistribution Due to Diversion Cross-Flow Between Subchannels for Hydraulically Non-Equilibrium Two-Phase Flow
,”
Proceedings of the Fifth International Conference on Multiphase Flow, ICMF’04
, Yokohama, Japan.
8.
Kawahara
,
A.
,
Kano
,
K.
,
Sadatomi
,
M.
, and
Tezuka
,
M.
, 2004, “
Experiment and Analysis of Air-Water Two-Phase Flow Redistribution Due to Void Drift Between Subchannels for Hydrodynamic Non-Equilibrium Flow
,”
Proceedings of the Sixth International Conference on Nuclear Thermal Hydraulics, Operations and Safety (NUTHOS-6)
, Nara, Japan.
9.
Kawahara
,
A.
,
Sadatomi
,
M.
,
Nakajima
,
J.
, and
Nakamoto
,
Y.
, 2008, “
Constitutive Equations of Wall and Interfacial Friction Forces for Two-Phase Flow in a 2×1 Rods Channel Simplifying BWR Fuel Rod Bundle
,”
Proceedings of the Sixth Japan-Korea Symposium on Nuclear Thermal Hydraulics and Safety
, Okinawa, Japan, Paper No. N6P1001.
10.
Tsubone
,
H.
,
Sadatomi
,
M.
,
Kawahara
,
A.
, and
Nariyasu
,
H.
, 2001, “
Characteristics of Air-Magnetic Fluid Two-Phase Flow in Vertical Small Diameter Tubes
,”
Proceedings of the Fourth International Conference on Multiphase Flow, ICMF2001
, New Orleans.
11.
Liu
,
Y.
,
Hibiki
,
T.
,
Sun
,
X.
,
Ishii
,
M.
, and
Kelly
,
J. M.
, 2008, “
Drag Coefficient in One-Dimensional Two-Group Two-Fluid Model
,”
Int. J. Heat Fluid Flow
0142-727X,
29
, pp.
1402
1410
.
12.
Armand
,
A. A.
, 1959, “
The Resistance During the Movement of a Two-Phase System in Horizontal Pipes
,”
Izv. Vses. Teplotekh. Inst.
,
1
, pp.
16
23
. 0002-7820
13.
Delhaye
,
J. M.
, and
Bricard
,
P.
, 1994, “
Interfacial Area in Bubbly Flow: Experimental Data and Correlations
,”
Nucl. Eng. Des.
0029-5493,
151
, pp.
65
77
.
14.
Ishii
,
M.
, and
Chawla
,
T. C.
, 1979, “
Local Drag Laws in Dispersed Two-Phase Flow
,” Argonne Report No. Anl-79-105.
15.
Ransom
,
V. H.
,
et al.
, 1985, “
RELAP5/MOD2 Code Manual, Volume 1: Code Structure, System Models, and Solution Methods
,” NUREG/CR-4312, EGG-2796, EG&G Idaho, Inc., Idaho.
16.
Liles
,
D. R.
,
Spore
,
J. W.
,
Knight
,
T. D.
,
Nelson
,
R. A.
,
Cappiello
,
M. W.
,
Pasamehmetoglu
,
K. O.
,
Mahaffy
,
J. H.
,
Guffee
,
L. A.
,
Stumpf
,
H. J.
,
Dotson
,
P. J.
,
Steinke
,
R. G.
,
Shire
,
P. R.
,
Greiner
,
S. E.
, and
Sherwood
,
K. B.
, 1988, “
TRAC-PF1/MOD1—Correlations and Models
,” NUREG/GR-5069, LA-11208-MS.
17.
Hibiki
,
T.
, and
Ishii
,
M.
, 2001, “
Interfacial Area Concentration in Steady Fully-Developed Bubbly Flow
,”
Int. J. Heat Mass Transfer
0017-9310,
44
, pp.
3443
3461
.
18.
Bensler
,
H. P.
, 1990, “
Détermination de l’aire interfaciale, du taux devide et du diameter moyen de Sauter dans un écoulement à bulles à partir de l’atténuation d’un faisceau d’ultrasons
,” Ph.D. thesis, Institute National Polytechnique de Grenoble, France.
19.
Ishii
,
M.
, and
Zuber
,
N.
, 1979, “
Drag Coefficient and Relative Velocity in Bubbly, Droplet or Particulate Flows
,”
AIChE J.
0001-1541,
25
(
5
), pp.
843
855
.
20.
Ishii
,
M.
, 1977, “
One-Dimensional Drift-Flux Model and Constitutive Equations for Relative Motion Between Phases in Various Two-Phase Flow Regimes
,” Argonne National Laboratory, Technical Report No. ANL-77-47.
21.
Bestion
,
D.
, 1990, “
The Physical Closure Laws in the CATHARE Code
,”
Nucl. Eng. Des.
0029-5493,
124
, pp.
229
245
.
You do not currently have access to this content.