In order to better understand how future candidate diesel fuels may affect combustion characteristics in diesel engines, 21 pure component hydrocarbon fuels were tested in a single-cylinder diesel engine. These pure component fuels included normal alkanes (C6–C16), normal primary alkenes (C6–C18), isoalkanes, cycloalkanes/-enes, and aromatic species. In addition, seven fuel blends were tested, including commercial diesel fuel, U.S. Navy JP-5 aviation fuel, and five Fischer–Tropsch synthetic fuels. Ignition delay was used as a primary combustion metric for each fuel, and the ignition delay period was analyzed from the perspective of the physical delay period followed by the chemical delay period. While fuel properties could not strictly be varied independently of each other, several ignition delay correlations with respect to physical properties were suggested. In general, longer ignition delays were observed for component fuels with lower liquid fuel density, kinematic viscosity, and liquid-air surface tension. Longer ignition delay was also observed for component fuels with higher fuel volatility, as measured by boiling point and vapor pressure. Experimental data show two regimes of operation: For a carbon chain length of 12 or greater, there is little variation in ignition delay for the tested fuels. For shorter chain lengths, a fuel molecular structure is very important. Carbon chain length was used as a scaling variable with an empirical factor to collapse the ignition delay onto a single trend line. Companion detailed kinetic modeling was pursued on the lightest fuel species set (C6) since this fuel set possessed the greatest ignition delay differences. The kinetic model gives a chemical ignition delay time, which, together with the measured experimental ignition delay, suggests that the physical and chemical delay period have comparable importance. However, the calculated chemical delay periods capture the general variation in the overall ignition delay and could be used to predict the ignition delay of possible future synthetic diesel fuels.

1.
Challen
,
B.
, and
Baranescu
,
R.
, 1999,
Diesel Engine Reference Book
,
SAE
,
Warrendale, PA
.
2.
Han
,
M.
,
Bohac
,
S. V.
,
Jacobs
,
T. J.
, and
Assanis
,
D. N.
, 2007, “
Method and Detailed Analysis of Individual Hydrocarbon Species From Diesel Combustion Modes and Diesel Oxidation Catalyst
,” ASME Paper No. ICEF2007-1632.
3.
Alleman
,
T. L.
, and
McCormick
,
R. L.
, 2003, “
Fischer-Tropsch Diesel Fuels—Properties and Exhaust Emissions: A Literature Review
,” SAE Paper No. 2003-01-0763.
4.
Johnson
,
J. W.
,
Berllowitz
,
P. J.
,
Ryan
,
D. F.
,
Wittenbrink
,
R. J.
,
Genetti
,
W. B.
,
Ansell
,
L. L.
,
Kwon
,
Y.
, and
Rickeard
,
D. J.
, 2001, “
Emissions From Fischer-Tropsch Diesel Fuels
,” SAE Paper No. 2001-01-3518.
5.
Majewski
,
W. A.
, and
Khair
,
M. K.
, 2006,
Diesel Emissions and Their Control
,
SAE
,
Warrendale, PA
.
6.
Heywood
,
J. B.
, 1988,
Internal Combustion Engine Fundamentals
,
McGraw-Hill
,
New York
.
7.
McMillian
,
M. H.
, and
Gautam
,
M.
, 2001, “
Combustion and Emission Characteristics of FT and Standard Diesel Fuel in a Single Cylinder Diesel Engine
,” SAE Paper No. 2001-01-3517.
8.
Atkinson
,
C. M.
,
Thompson
,
G. J.
,
Traver
,
M. L.
, and
Clark
,
N. N.
, 1999, “
In-Cylinder Combustion Pressure Characteristics of FT and Conventional Diesel Fuels in a Heavy Duty CI Engine
,” SAE Technical Paper No. 1999-01-1472.
9.
Cowart
,
J. S.
,
Sink
,
E. M.
,
Slye
,
P. G.
,
Caton
,
P. A.
, and
Hamilton
,
L. J.
, 2008, “
Performance, Efficiency and Emissions Comparison of Diesel Fuel and a Fischer-Tropsch Synthetic Fuel in a CFR Single Cylinder Diesel Engine During High Load Operation
,” SAE Paper No. 2008-01-2382.
10.
Kitano
,
K.
,
Sakata
,
I.
, and
Clark
,
R.
, 2005, “
Effects of GTL Fuel Properties on DI Diesel Combustion
,” SAE Paper No. 2005-01-3763.
11.
Glavinčevski
,
B.
,
Gulder
,
O. L.
, and
Gardner
,
L.
, 1984, “
Cetane Number Estimation of Diesel Fuels From Carbon Type Structure
,” SAE Paper No. 841341.
12.
El Wakil
,
M. M.
,
Myers
,
P. S.
, and
Uyehara
,
O. A.
, 1956, “
Fuel Vaporization and Ignition Lag in Diesel Combustion
,” SAE Paper No. 560063.
13.
Obert
,
E. F.
, 1973,
Internal Combustion Engines and Air Pollution
,
3rd ed.
,
Intext
,
New York
, pp.
299
302
.
14.
Brunt
,
M. F. J.
, and
Emtage
,
A. L.
, 1996, “
Evaluation of IMEP Routines and Analysis Errors
,” SAE Paper No. 960609.
15.
Brunt
,
M. F. J.
, and
Pond
,
C.
, 1997, “
Evaluation of Techniques for Absolute Cylinder Pressure Correction
,” SAE Paper No. 970036.
16.
Frenkel
,
M.
, ed., 2009,
TRC Thermodynamics Tables—Hydrocarbons, NIST Web Thermo Tables
, Professional edition,
National Institute of Standards and Technology, Standard Reference Data Program
,
Gaithersburg, MD
.
17.
Murphy
,
M. J.
,
Taylor
,
J. D.
, and
McCormick
,
R. L.
, 2004, “
Compendium of Experimental Cetane Number Data
,” National Renewable Energy Laboratory, Report No. NREL/SR-540-36805.
18.
Riazi
,
M. R.
, and
Al-Sahhaf
,
T. A.
, 1995, “
Physical Properties of n-Alkanes and n-Alkylhydrocarbons: Application to Petroleum Mixtures
,”
Ind. Eng. Chem. Res.
0888-5885,
34
, pp.
4145
4148
.
19.
Woschni
,
G.
, 1967, “
Universally Applicable Equation for the Instantaneous Heat Transfer Coefficient in the Internal Combustion Engine
,”
SAE Trans.
0096-736X,
76
, pp.
3065
3077
.
20.
Chun
,
K. M.
,
Heywood
,
J. B.
, and
Keck
,
J. C.
, 1988, “
Prediction of Knock Occurrence in a Spark-Ignition Engine
,”
22nd Symposium on Combustion
, The Combustion Institute.
21.
Flynn
,
P. F.
,
Durrett
,
R. P.
,
Hunter
,
G. L.
,
zur Loye
,
A. O.
,
Akinyemi
,
O. C.
,
Dec
,
J. E.
, and
Westbrook
,
C. K.
, 1999, “
Diesel Combustion: An Integrated View Combining Laser Diagnostics, Chemical Kinetics, and Empirical Validation
,” SAE Paper No. 1999-01-0509.
22.
Ricou
,
F. P.
, and
Spalding
,
D. B.
, 1961, “
Measurements of Entrainment by Axisymmetrical Turbulent Jets
,”
J. Fluid Mech.
0022-1120,
11
, pp.
21
32
.
23.
Han
,
D.
, and
Mungal
,
M. G.
, 2001, “
Direct Measurement of Entrainment in Reacting/Nonreacting Turbulent Jets
,”
Combust. Flame
0010-2180,
124
, pp.
370
386
.
24.
Pope
,
S.
, 2000,
Turbulent Flows
,
Cambridge University Press
,
New York
, p.
171
.
25.
Yoshizaki
,
T.
,
Nishida
,
K.
, and
Hiroyasu
,
H.
, 1993, “
Approach to Low NoDx and Smoke Emission Engines by Using Phenomenological Simulation
,” SAE Paper No. 930612.
26.
Pickett
,
L. M.
,
Caton
,
J. A.
,
Musculus
,
M. P. B.
, and
Lutz
,
A. E.
, 2006, “
Evaluation of the Equivalence Ratio-Temperature Region of Diesel Soot Precursor Formation Using a Two-Stage Lagrangian Model
,”
Int. J. Engine Res.
1468-0874,
7
, pp.
349
370
.
27.
Reitz
,
R. D.
, and
Bracco
,
F. V.
, 1982, “
Mechanism of Atomization of a Liquid Jet
,”
Phys. Fluids
0031-9171,
25
(
10
), pp.
1730
1742
.
28.
Naber
,
J. D.
, and
Siebers
,
D. L.
, 1996, “
Effects of Gas Density and Vaporization on Penetration and Dispersion of Diesel Sprays
,” SAE Paper No. 960034.
29.
Curran
,
H. J.
,
Fisher
,
E. M.
,
Glaude
,
P. A.
,
Marinov
,
N. M.
,
Pitz
,
W. J.
,
Westbrook
,
C. K.
,
Layton
,
D. W.
,
Flynn
,
P. F.
,
Durrett
,
R. P.
,
zur Loye
,
A. O.
,
Akinyemi
,
O. C.
, and
Dryer
,
F. L.
, 2001, “
Detailed Chemical Kinetic Modeling of Diesel Combustion With Oxygenated Fuels
,” SAE Paper No. 2001-01-0653.
30.
Westbrook
,
C. K.
,
Pitz
,
W. J.
, and
Curran
,
H. J.
, 2006, “
Chemical Kinetic Modeling Study of the Effects of Oxygenated Hydrocarbons on Soot Emissions From Diesel Engines
,”
J. Phys. Chem. A
1089-5639,
110
, pp.
6912
6922
.
31.
Westbrook
,
C. K.
, 2000, “
Chemical Kinetics of Hydrocarbon Ignition in Practical Combustion Systems
,”
Proc. Combust. Inst.
1540-7489,
28
, pp.
1563
1577
.
32.
Silke
,
E. J.
,
Pitz
,
W. J.
,
Westbrook
,
C. K.
, and
Ribaucour
,
M.
, 2007, “
Detailed Chemical Kinetic Modeling of Cyclohexane Oxidation
,”
J. Phys. Chem. A
1089-5639,
111
, pp.
3761
3775
.
33.
Westbrook
,
C. K.
,
Pitz
,
W. J.
,
Herbinet
,
O.
,
Curran
,
H. J.
, and
Silke
,
E. J.
, 2009, “
A Comprehensive Detailed Chemical Kinetic Reaction Mechanism for Combustion of n-Alkane Hydrocarbons From n-Octane to n-Hexadecane
,”
Combust. Flame
0010-2180,
156
, pp.
181
199
.
34.
Mehl
,
M.
,
Vanhove
,
G.
,
Pitz
,
W. J.
, and
Ranzi
,
E.
, 2008, “
Oxidation and Combustion of the n-Hexene Isomers: A Wide Range Kinetic Modeling Study
,”
Combust. Flame
0010-2180,
155
, pp.
756
772
.
35.
Goodwin
,
D. G.
, 2003, “
An Open-Source, Extensible Software Suite for CVD Process Simulation
,”
Chemical Vapor Deposition XVI and EUROCVD 14
, ECS Proceedings, The Electrochemical Society,
M.
Allendorf
,
F.
Maury
, and
F.
Teyssandier
, eds., Vol.
2003-08
, pp.
155
162
.
You do not currently have access to this content.