Gas foil bearings offer several advantages over traditional bearing types that make them attractive for use in high-speed turbomachinery. They can operate at very high temperatures, require no lubrication supply (oil pumps, seals, etc.), exhibit very long life with no maintenance, and once operating airborne, have very low power loss. The use of gas foil bearings in high-speed turbomachinery has been accelerating in recent years although the pace has been slow. One of the contributing factors to the slow growth has been a lack of analysis tools, benchmarked to measurements, to predict gas foil bearing behavior in rotating machinery. To address this shortcoming, NASA Glenn Research Center (GRC) has supported the development of analytical tools to predict gas foil bearing performance. One of the codes has the capability to predict rotordynamic coefficients, power loss, film thickness, structural deformation, and more. The current paper presents an assessment of the predictive capability of the code named XLGFBTH©. A test rig at GRC is used as a simulated case study to compare rotordynamic analysis using output from the code to actual rotor response as measured in the test rig. The test rig rotor is supported on two gas foil journal bearings manufactured at GRC with all pertinent geometry disclosed. The resulting comparison shows that the rotordynamic coefficients calculated using XLGFBTH© represent the dynamics of the system reasonably well especially as they pertain to predicting critical speeds.

1.
Ku
,
C. P. R.
, and
Heshmat
,
H.
, 1992, “
Compliant Foil Bearing Structural Stiffness Analysis: Part I—Theoretical Model Including Strip and Variable Bump Foil Geometry
,”
ASME J. Tribol.
0742-4787,
114
(
2
), pp.
394
400
.
2.
Ku
,
C. P. R.
, and
Heshmat
,
H.
, 1993, “
Compliant Foil Bearing Structural Stiffness Analysis: Part II—Experimental Investigation
,”
ASME J. Tribol.
0742-4787,
115
(
3
), pp.
364
369
.
3.
Ku
,
C. P. R.
, and
Heshmat
,
H.
, 1994, “
Effects of Static Load on Dynamic Structural Properties in a Flexible Supported Foil Journal Bearing
,”
ASME J. Vibr. Acoust.
0739-3717,
116
(
3
), pp.
257
262
.
4.
Rubio
,
D.
, and
San Andrés
,
L.
, 2006, “
Bump-Type Foil Bearing Structural Stiffness: Experiments and Predictions
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
128
(
3
), pp.
653
660
.
5.
Le Lez
,
S.
,
Arghir
,
M.
, and
Frene
,
J.
, 2007, “
Static and Dynamic Characterisation of a Bump-Type Foil Bearing Structure
,”
ASME J. Tribol.
0742-4787,
129
(
1
), pp.
75
83
.
6.
Lee
,
Y. -B.
,
Jo
,
J. -H.
,
Park
,
D. -J.
,
Kim
,
C. -H.
, and
Rhim
,
Y. -C.
, 2006, “
Dynamic Characteristics of Bump Foils Considering With Thermal Effect in Air Foil Bearings
,”
STLE/ASME
Paper No. IJTC2006-12189.
7.
Heshmat
,
H.
,
Walowit
,
J. A.
, and
Pinkus
,
O.
, 1983, “
Analysis of Gas-Lubricated Foil Journal Bearings
,”
ASME J. Lubr. Technol.
0022-2305,
105
(
4
), pp.
647
655
.
8.
Heshmat
,
H.
,
Walowit
,
J. A.
, and
Pinkus
,
O.
, 1983, “
Analysis of Gas-Lubricated Compliant Thrust Bearings
,”
ASME J. Lubr. Technol.
0022-2305,
105
(
4
), pp.
638
646
.
9.
Iordanoff
,
I.
, 1999, “
Analysis of an Aerodynamic Compliant Foil Thrust Bearing: Method for a Rapid Design
,”
ASME J. Tribol.
0742-4787,
121
(
4
), pp.
816
822
.
10.
Heshmat
,
C. A.
,
Xu
,
D. S.
, and
Heshmat
,
H.
, 2000, “
Analysis of Gas Lubricated Foil Thrust Bearings Using Coupled Finite Element and Finite Difference Methods
,”
ASME J. Tribol.
0742-4787,
122
(
1
), pp.
199
204
.
11.
Bruckner
,
R. J.
, 2004, “
Simulation and Modeling of the Hydrodynamic, Thermal, and Structural Behavior of Foil Thrust Bearings
,” Ph.D. dissertation, Case Western Reserve University, Cleveland, OH.
12.
Peng
,
J. -P.
, and
Carpino
,
M.
, 1993, “
Calculation of Stiffness and Damping Coefficients for Elastically Supported Gas Foil Bearings
,”
ASME J. Tribol.
0742-4787,
115
(
1
), pp.
20
27
.
13.
Peng
,
J. -P.
, and
Carpino
,
M.
, 1994, “
Coulomb Friction Damping Effects in Elastically Supported Gas Foil Bearings
,”
STLE Tribol. Trans.
1040-2004,
37
(
1
), pp.
91
98
.
14.
Carpino
,
M.
,
Medvetz
,
L. A.
, and
Peng
,
J. -P.
, 1994, “
Effects of Membrane Stresses in the Prediction of Foil Bearing Performance
,”
STLE Tribol. Trans.
1040-2004,
37
(
1
), pp.
43
50
.
15.
Carpino
,
M.
,
Peng
,
J. -P.
, and
Medvetz
,
L. A.
, 1994, “
Misalignment in a Complete Shell Gas Foil Journal Bearing
,”
STLE Tribol. Trans.
1040-2004,
37
(
4
), pp.
829
835
.
16.
Carpino
,
M.
, and
Talmadge
,
G.
, 2003, “
A Fully Coupled Finite Element Formulation for Elastically Supported Foil Journal Bearings
,”
STLE Tribol. Trans.
1040-2004,
46
(
4
), pp.
560
565
.
17.
Carpino
,
M.
, and
Talmadge
,
G.
, 2006, “
Prediction of Rotor Dynamic Coefficients in Gas Lubricated Foil Journal Bearings with Corrugated Sub-Foils
,”
STLE Tribol. Trans.
1040-2004,
49
(
3
), pp.
400
409
.
18.
Lee
,
N. S.
,
Choi
,
D. H.
,
Lee
,
Y. B.
,
Kim
,
T. H.
, and
Kim
,
C. H.
, 2002, “
The Influence of the Slip Flow on Steady-State Load Capacity, Stiffness and Damping Coefficients of Elastically Supported Gas Foil Bearings
,”
STLE Tribol. Trans.
1040-2004,
45
(
4
), pp.
478
484
.
19.
Peng
,
Z. -C.
, and
Khonsari
,
M. M.
, 2004, “
Hydrodynamic Analysis of Compliant Foil Bearings With Compressible Air Flow
,”
ASME J. Tribol.
0742-4787,
126
(
3
), pp.
542
546
.
20.
Peng
,
Z. -C.
, and
Khonsari
,
M. M.
, 2006, “
A Thermohydrodynamic Analysis of Foil Journal Bearings
,”
ASME J. Tribol.
0742-4787,
128
(
3
), pp.
534
541
.
21.
DellaCorte
,
C.
,
Radil
,
K. C.
,
Bruckner
,
R. J.
, and
Howard
,
S. A.
, 2007, “
Design, Fabrication and Performance of Open Source Generation I and II Compliant Hydrodynamic Gas Foil Bearings
,” NASA/TM Paper No. 2007-214691/ARL-TR-4102.
22.
Kim
,
T. H.
, and
San Andrés
,
L.
, 2005, “
Heavily Loaded Gas Foil Bearings: A Model Anchored to Test Data
,”
ASME
Paper No. GT2005-68486.
23.
Kim
,
T. H.
, and
San Andrés
,
L.
, 2006, “
Limits for High Speed Operation of Gas Foil Bearings
,”
ASME J. Tribol.
0742-4787,
128
(
3
), pp.
670
673
.
24.
San Andrés
,
L.
, and
Kim
,
T. H.
, 2007, “
Improvements to the Analysis of Gas Foil Bearings: Integration of Top Foil 1D and 2D Structural Models
,”
ASME
Paper No. GT2007-27249.
25.
Radil
,
K.
,
Dellacorte
,
C.
,
Bruckner
,
R.
, and
Zesotek
,
M.
, 2007, “
Thermal Management Techniques for Oil-Free Turbomachinery Systems
,”
STLE Tribol. Trans.
1040-2004,
50
, pp.
319
327
.
26.
Kim
,
T. H.
, and
San Andrés
,
L.
, 2009, “
Effect of Side Feed Pressurization on the Dynamic Performance of Gas Foil Bearings: A Model Anchored to Test Data
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
131
(
1
), p.
012501
.
27.
Rubio
,
D.
, and
San Andrés
,
L.
, 2007, “
Structural Stiffness, Dry Friction Coefficient, and Equivalent Viscous Damping in a Bump-Type Foil Gas Bearing
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
129
(
2
), pp.
494
502
.
28.
Kim
,
T. H.
,
Breedlove
,
A. W.
, and
San Andrés
,
L.
, 2008, “
Characterization of Foil Bearing Structure for Increasing Shaft Temperature: Part I-Static Load Performance
,”
ASME
Paper No. GT2008-50567.
29.
Kim
,
T. H.
,
Breedlove
,
A. W.
, and
San Andrés
,
L.
, 2008, “
Characterization of Foil Bearing Structure for Increasing Shaft Temperature: Part II-Dynamic Force Performance
,”
ASME
Paper No. GT2008-50570.
30.
Howard
,
S. A.
, 2007, “
A New High-Speed Oil-Free Turbine Engine Rotordynamic Simulator Test Rig
,” NASA/TM Paper No. 2007-214489.
31.
Radil
,
K. C.
, and
Dellacorte
,
C.
, 2002, “
The Effect of Journal Roughness and Foil Coatings on the Performance of Heavily Loaded Foil Bearings
,”
Tribol. Trans.
1040-2004,
45
(
2
), pp.
199
204
.
32.
San Andrés
,
L.
, and
Kim
,
T. H.
, 2008, “
Forced Nonlinear Response of Gas Foil Bearing Supported Rotors
,”
Tribol. Int.
0301-679X,
41
(
8
), pp.
704
715
.
33.
San Andrés
,
L.
, and
Kim
,
T. H.
, 2010, “
Thermohydrodynamic Analysis of Bump Type Gas Foil Bearings: A Model Anchored to Test Data
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
132
(
4
), p.
042504
.
34.
Kim
,
T. H.
, and
San Andrés
,
L.
, 2010, “
Thermohydrodynamic Model Predictions and Performance Measurements of Bump-Type Foil Bearing for Oil-Free Turboshaft Engines in Rotorcraft Propulsion Systems
,”
ASME J. Tribol.
0742-4787,
132
(
1
), p.
011701
.
You do not currently have access to this content.