Proper cooling of the hot components and an optimal temperature distribution at the turbine inlet are fundamental targets for gas turbine combustors. In particular, the temperature distribution at the combustor discharge is a critical issue for the durability of the turbine blades and the high performance of the engine. At present, CFD is a widely used tool to simulate the reacting flow inside gas turbine combustors. This paper presents a numerical analysis of a single can type combustor designed to be fed both with hydrogen and natural gas. The combustor also features a steam injection system to restrain the NOx pollutants. The simulations were carried out to quantify the effect of fuel type and steam injection on the temperature field. The CFD model employs a computationally low cost approach, thus the physical domain is meshed with a coarse grid. A full-scale test campaign was performed on the combustor: temperatures at the liner wall and the combustor outlet were acquired at different operating conditions. These experimental data, which are discussed, were used to evaluate the capability of the present CFD model to predict temperature values for combustor operation with different fuels and steam to fuel ratios.

1.
Lefebvre
,
A. H.
, 1998,
Gas Turbine Combustion
, 2nd ed.,
Taylor & Francis
,
Philadelphia
.
2.
Jiang
,
L. -Y.
, and
Campbell
,
I.
, 2008, “
Radiation Bench-Marking in a Model Combustor
,”
ASME
Paper No. GT2008-50179.
3.
Shehata
,
M.
, 2009, “
Emission and Wall Temperatures for Lean Prevaporized Premixed Gas Turbine Combustor
,”
Fuel
0016-2361,
88
, pp.
446
455
.
4.
Eggels
,
R. L. G. M.
, 2000, “
Modelling of the Combustion Process of a Premixed DLE Gas Turbine
,”
ASME
Paper No. 2000-GT-0130.
5.
Birkby
,
P.
,
Cant
,
R. S.
,
Dawes
,
W. N.
,
Demargne
,
A. A. J.
,
Dhanasekaran
,
P. C.
,
Kellar
,
W. P.
,
Rycroft
,
N. C.
,
Savill
,
A. M.
,
Eggels
,
R. L. G. M.
, and
Jennions
,
I. K.
, 2000, “
CFD Analysis of a Complete Industrial Lean Premixed Gas Turbine Combustor
,”
ASME
Paper No. 2000-GT-0131.
6.
Sivaramakrishna
,
G.
,
Muthuveerappan
,
N.
,
Venkataraman
,
S.
, and
Sampathkumaran
,
T. K.
, 2001, “
CFD Modelling of The Aero Gas Turbine Combustor
,”
ASME
Paper No. 2001-GT-0063.
7.
Eggels
,
R. L. G. M.
, and
Brown
,
C. T.
, 2001, “
Comparison of Numerical and Experimental Results of a Premixed DLE Gas Turbine Combustor
,”
ASME
Paper No. 2001-GT-0065.
8.
Li
,
L.
,
Peng
,
X. F.
, and
Liu
,
T.
, 2006, “
Combustion and Cooling Performance in an Aero-Engine Annular Combustor
,”
Appl. Therm. Eng.
1359-4311,
26
, pp.
1771
1779
.
9.
Boudier
,
G.
,
Gicquel
,
L. Y. M.
,
Poinsot
,
T.
,
Bissières
,
D.
, and
Bérat
,
C.
, 2007, “
Comparison of LES, RANS and Experiments in an Aeronautical Gas Turbine Combustion Chamber
,”
Proc. Combust. Inst.
1540-7489,
31
, pp.
3075
3082
.
10.
Fureby
,
C.
,
Grinstein
,
F. F.
,
Li
,
G.
, and
Gutmark
,
E. J.
, 2007, “
An Experimental and Computational Study of a Multi-Swirl Gas Turbine Combustor
,”
Proc. Combust. Inst.
1540-7489,
31
, pp.
3107
3114
.
11.
Le Clercq
,
P.
,
Schlieper
,
M.
,
Noll
,
B.
, and
Aigner
,
M.
, 2008, “
Liquid Fuel Flameless Combustion RANS Simulation
,”
ASME
Paper No. GT2008-50552.
12.
Chrigui
,
M.
,
Sadiki
,
A.
, and
Janicka
,
J.
, 2008, “
Numerical Analysis of Spray Dispersion, Evaporation and Combustion in a Single Gas Turbine Combustor
,”
ASME
Paper No. GT2008-51253.
13.
De Oliveira Rodriguez
,
L.
, and
Do Nascimento
,
M. A. R.
, 2009, “
Different Fuels Assessment in Gas Turbine Combustion Chamber for Pre-Mixed and Diffusive Flame
,”
Proceedings of 22nd ECOS
, Foz do Iguaçu, Paranà, Brazil, pp.
1959
1968
.
14.
Sierra
,
F. Z.
,
Kubiak
,
J.
,
Gonzalez
,
G.
, and
Urquiza
,
G.
, 2005, “
Prediction of Temperature Front in a Gas Turbine Combustion Chamber
,”
Appl. Therm. Eng.
1359-4311,
25
, pp.
1127
1140
.
15.
Dudebout
,
R.
,
Reynolds
,
B.
, and
Molla-Hosseini
,
K.
, 2004, “
Integrated Process for CFD Modelling and Optimization of Gas Turbine Combustors
,”
ASME
Paper No. GT2004-54011.
16.
Malecki
,
R. E.
,
Rhie
,
C. M.
,
McKinney
,
R. G.
,
Ouyang
,
H.
,
Syed
,
S. A.
,
Colket
,
M. B.
, and
Madabhushi
,
R. K.
, 2001, “
Application of an Advanced CFD-Based Analysis System to the PW6000 Combustor to Optimize Exit Temperature Distribution—Part I: Description and Validation of The Analysis Tool
,”
ASME
Paper No. 2001-GT-0062.
17.
Snyder
,
T. S.
,
Stewart
,
J. F.
,
Stoner
,
M. D.
, and
McKinney
,
R. G.
, 2001, “
Application of an Advanced CFD-Based Analysis System to the PW6000 Combustor to Optimize Exit Temperature Distribution—Part II: Comparison of Predictions to Full Annular Rig Test Data
,”
ASME
Paper No. 2001-GT-0064.
18.
Koutsenko
,
I. G.
,
On egin
,
S. F.
, and
Sipatov
,
A. M.
, 2004, “
Application of CFD-Based Analysis Technique for Design and Optimization of Gas Turbine Combustors
,”
ASME
Paper No. GT2004-53398.
19.
Andreini
,
A.
,
Cerutti
,
M.
,
Facchini
,
B.
, and
Mangani
,
L.
, 2008, “
Modelling of Turbulent Combustion and Radiative Heat Transfer in a Object-Oriented CFD Code for Gas Turbine Application
,”
ASME
Paper No. GT2008-51117.
20.
Tiribuzi
,
S.
, 2008, “
CFD Simulation of Noise in Gas Turbine Combustors by Means of Turbulence Refluctuation Method
,”
ASME
Paper No. GT2008-50241.
21.
Balestri
,
M.
,
Sigali
,
S.
,
Cocchi
,
S.
, and
Provenzale
,
M.
, 2008, “
Low-NOx Hydrogen Fuelled GT Features and Environmental Performances
,”
Proceedings of POWER-GEN Europe
, Paper No. ID 112.
22.
Cocchi
,
S.
,
Provenzale
,
M.
,
Cinti
,
V.
,
Carrai
,
L.
,
Sigali
,
S.
, and
Cappetti
,
D.
, 2008, “
Experimental Characterization of a Hydrogen Fuelled Combustor With Reduced NOx Emissions for a 10 MW Class Gas Turbine
,”
ASME
Paper No. GT2008-51271.
23.
Cocchi
,
S.
, and
Sigali
,
S.
, 2010, “
Development of a Low-NOx Hydrogen Fuelled Combustor for 10 MW Class Gas Turbines
,”
ASME
Paper No. GT2010-23348.
24.
Benovsky
,
P.
,
Brunetti
,
I.
,
Sigali
,
S.
,
Leroy
,
C.
,
Gheri
,
P.
, and
Cocchi
,
S.
, 2008, “
NOx Reduction Strategy in GE10 Hydrogen-Fuelled Heavy Duty Gas Turbine
,”
ASME
Paper No. GT2008-51270.
25.
Gobbato
,
P.
,
Masi
,
M.
,
Toffolo
,
A.
, and
Lazzaretto
,
A.
, 2009, “
Numerical Simulation of a Hydrogen Fuelled Gas Turbine Combustor
,”
Proceedings of HYSYDAYS
, Torino, Italy.
26.
McBride
,
B. J.
,
Gordon
,
S.
, and
Reno
,
M. A.
, 1993, “
Coefficients for Calculating Thermodynamic and Transport Properties of Individual Species
,”
NASA
Report No. TM-4513.
27.
Magnussen
,
B. F.
, and
Hjertager
,
B. H.
, 1976, “
On Mathematical Models of Turbulent Combustion With Special Emphasis on Soot Formation and Combustion
,”
Proceedings of the 16th Symposium on Combustion
, the Combustion Institute.
28.
Turns
,
S. R.
, 2000,
An Introduction to Combustion
, 2nd ed.,
McGraw-Hill
,
Singapore
.
29.
Marathe
,
A. G.
,
Mukunda
,
H. S.
, and
Jain
,
V. K.
, 1977, “
Some Studies on Hydrogen-Oxygen Diffusion Flame
,”
Combust. Sci. Technol.
0010-2202,
15
, pp.
49
64
.
30.
Obieglo
,
A.
,
Gass
,
J.
, and
Poulikakos
,
D.
, 2000, “
Comparative Study of Modelling a Hydrogen Nonpremixed Turbulent Flame
,”
Combust. Flame
0010-2180,
122
, pp.
176
194
.
31.
Hirschfelder
,
J. O.
,
Curtiss
,
C. F.
, and
Bird
,
R. B.
, 1954,
Molecular Theory of Gases and Liquids
,
Wiley
,
New York
.
32.
Menter
,
F. R.
, 1994, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
0001-1452,
32
, pp.
1598
1605
.
33.
Sazhin
,
S. S.
,
Sazhina
,
E. M.
,
Faltsi-Saravelou
,
O.
, and
Wild
,
P.
, 1996, “
The P-1 Model for Thermal Radiation Transfer: Advantages and Limitations
,”
Fuel
0016-2361,
75
, pp.
289
294
.
34.
Denison
,
M. K.
, and
Webb
,
B. W.
, 1993, “
A Spectral Line-Based Weighted-Sum-of-Gray-Gases Model for Arbitrary RTE Solvers
,”
ASME J. Heat Transfer
0022-1481,
115
, pp.
1004
1012
.
35.
Patankar
,
S. V.
, and
Spalding
,
D. B.
, 1972, “
A Calculation Procedure for Heat, Mass and Momentum Transfer in Three-Dimensional Parabolic Flows
,”
Int. J. Heat Mass Transfer
0017-9310,
15
, pp.
1787
1806
.
You do not currently have access to this content.