Laser ignition is a potential ignition technology to achieve reliable lean burn ignition in high brake mean effective pressure (BMEP) internal combustion engines. The technology has the potential to increase brake thermal efficiency and reduce exhaust emissions. This submission reports on engine testing of a Caterpillar G3516C stationary natural gas fueled engine with three types of ignition approaches: (i) nonfueled electric prechamber plug with electrodes at the base of the prechamber, (ii) nonfueled laser prechamber plug with laser spark in the middle of the prechamber, and (iii) open chamber plug with laser spark in the main chamber. In the second configuration, a stock nonfueled prechamber plug was modified to incorporate a sapphire window and a focusing lens to form a laser prechamber plug. A 1064 nm Q-switched Nd:YAG laser was used to create laser sparks. For these tests, a single cylinder of the engine was retrofitted with the laser plug while the remaining cylinders were run with conventional electric ignition system at baseline ignition timing of 24 deg before top dead center (BTDC). The performances of the three plugs were compared in terms of indicated mean effective pressures (IMEP), mass burn fraction duration and coefficient of variation (COV) of IMEP, and COV of peak pressure location. Test data show comparable performance between electric and laser prechamber plugs, albeit with a lower degree of variability in engine’s performance for electric prechamber plug compared to the laser prechamber plug. The open chamber plug exhibited poorer variability in engine performance. All results are discussed in the context of prechamber and engine fluid mechanics.

References

1.
Mullett
,
J. D.
,
Dearon
,
G.
,
Dodd
,
R.
,
Shenton
,
A. T.
,
Triantos
,
G.
, and
Watkins
,
K. G.
, 2009, “
A Comparative Study of Optical Fiber Types for Application in a Laser-Induced Ignition System
,”
J. Opt. A, Pure Appl. Opt.
,
11
, pp.
1
10
.
2.
El-Rabii
,
H.
,
Zahringer
,
K.
,
Rolon
,
J. C.
, and
Lacas
,
F.
, 2004, “
Laser Ignition in a Lean Premixed Prevaporized Injector
,”
Combust. Sci. Technol.
,
176
, pp.
1391
1417
.
3.
Yalin
,
A. P.
,
Joshi
,
S.
,
Defoort
,
M.
, and
Willson
,
B.
, 2008, “
Towards Multiplexed Fiber Delivered Laser Ignition for Natural Gas Engines
,”
ASME J. Eng. Gas Turbines Power
,
130
(
4
), p.
044502
.
4.
Herdin
,
G.
,
Klausner
,
J.
,
Wintner
,
E.
,
Weinrotter
,
M.
, and
Graf
,
J.
, 2005, “
Laser Ignition—A New Concept to Use and Increase the Potentials of Gas Engines
,”
ASME International Combustion Engine Division (2005) Fall Technical Conference
, pp.
1
9
.
5.
McMillian
,
M.
,
Richardson
,
S.
, and
Woodruff
,
S. D.
, 2004, “
Laser-Spark Ignition Testing in a Natural Gas-Fueled Single-Cylinder Engine
,” U.S. DOE - NETL.
6.
Dale
,
J. D.
,
Smy
,
P. R.
, and
Clements
,
R. M.
, 1979, “
Laser Ignited Internal Combustion Engine—An Experimental Study
,” SAE Paper 780329, pp.
1539
1548
.
7.
Kopecek
,
H.
,
Charareh
,
S.
,
Lackner
,
M.
,
Forsich
,
C.
,
Winter
,
F.
,
Kausner
,
J.
,
Herdin
,
G.
, and
Wintner
,
E.
, 2005, “
Laser Ignition of Methane-Air Mixtures at High Pressure and Diagnostics
,”
ASME J. Eng. Gas Turbines Power
,
127
, pp.
213
219
.
8.
Bradley
,
D.
,
Sheppard
,
C. G. W.
,
Suardjaja
,
I. M.
, and
Wooley
,
R.
, 2004, “
Fundamentals of High-Energy Spark Ignition With Lasers
,”
Combust. Flame
,
138
, pp.
55
77
.
9.
Joshi
,
S.
,
Olsen
,
D. B.
,
Dumitrescu
,
C.
,
Puzinauskas
,
P. V.
, and
Yalin
,
A. P.
, 2009, “
Laser-Induced Breakdown Spectroscopy for In-Cylinder Equivalence Ratio Measurements in Laser-Ignited Natural Gas Engines
,”
Appl. Spectrosc.
,
63
(
5
), pp.
114
130
.
10.
Phuoc
,
T. X.
, 2000, “
Laser Spark Ignition: Experimental Determination of Laser-Induced Breakdown Thresholds of Combustion Gases
,”
Opt. Commun.
,
175
, pp.
419
423
.
11.
Yalin
,
A. P.
,
Defoort
,
M.
,
Joshi
,
S.
,
Olsen
,
D. B.
,
Willson
,
B.
,
Matsuura
,
Y.
, and
Miyagi
,
M.
, 2005, “
Laser Ignition of Natural Gas Engines Using Fiber Delivery
,”
ASME ICE Division 2005 Fall Technical Conference
,
Ottawa
.
12.
Crane
M. E.
, and
King
,
S. R.
, 1992, “
Emission Reductions Through Precombustion Chamber Design in a Natural Gas, Lean Burn Engine
,”
Transactions of the ASME
,
114
, pp.
466
474
.
13.
Roethlisberger
,
R. P.
, and
Favrat
,
D.
, 2002, “
Comparison Between Direct and Indirect (Prechamber) Spark Ignition in the Case of a Cogeneration Natural Gas Engine, Part II: Engine Operating Parameters and Turbocharger Characteristics
,” Applied Thermal Engineering.
14.
Heywood
,
J. B.
, 1988, Internal Combustion Engine Fundamentals.
15.
Roethlisberger
,
R. P.
, and
Favrat
,
D.
, 2002, “
Investigation of the Prechamber Geometrical Configuration of a Natural Gas Spark Ignition Engine for Cogeneration: Part I. Numerical Simulation
,”
Int. J. Therm. Sci.
,
42
, pp.
223
237
.
16.
Charlton
,
S. J.
,
Jager
,
D. J.
,
Wilson
,
M.
, and
Shooshtarian
,
A.
, 2002, “
Computer Modeling and Experimental Investigation of a Lean Burn Natural Gas Engine
,” SAE Paper No. 900228.
17.
Phuoc
,
T. X.
, and
White
,
F. P.
, 1999, “
Laser-Induced Spark Ignition of CH4/Air Mixtures
,”
Combust. Flame
,
119
, pp.
203
216
.
18.
Davis
,
J. P.
,
Smith
,
A. L.
,
Giranda
,
C.
, and
Squicciarini
,
M.
, 1991, “
Laser-Induced Plasma Formation in Xe, Ar, N2, and O2 at the First Four Nd:YAG Harmonics
,”
Appl. Opt.
,
30
, pp.
4358
4364
.
19.
Tambay
,
R.
, and
Thereja
,
R. K.
, 1991, “
Laser-Induced Breakdown Studies of Laboratory Air at 0.266, 0.355, 0.532, and 1.06 μm
,”
J. Appl. Phys.
,
70
, pp.
2890
2892
.
20.
Argonne National Laboratory
, 2009,
Round Table on Ignition Systems for Stationary Reciprocating Engines
,
Argonne National Laboratory
,
Argonne, IL
.
21.
Huang
,
C. C.
,
Shy
,
S. S.
,
Liu
,
C. C.
, and
Yan
,
Y. Y.
, 2007, “
A Transition on Minimum Ignition Energy for Lean Turbulent Methane Combustion in Flamelet and Distributed Regimes
,”
Proceedings of the Combustion Institute
,
31
, pp.
1401
1409
.
You do not currently have access to this content.