In the present paper, a hydrodynamic bird material model made up of water and air mixture is developed, which produces good correlation with the measured strain-gauge test data in a panel test. This parametric bird projectile model is used to generate the time-history of the transient dynamic loads on the turbofan engine blades for different size birds impacting at varying span locations of the fan blade. The problem is formulated in 3D vector dynamics equations using a nonlinear trajectory analysis approach. The analytical derivation captures the physics of the slicing process by considering the incoming bird in the shape of a cylindrical impactor as it comes into contact with the rotating fan blades modeled as a pretwisted plate with a camber. The contact-impact dynamic loading on the airfoil produced during the bird-strike is determined by solving the coupled nonlinear dynamical equations governing the movement of the bird-slice in time-domain using a sixth-order Runge-Kutta technique. The analytically predicted family of load time-history curves enables the blade designer to readily identify the critical impact location for peak dynamic loading condition during the bird-ingestion tests mandated for certification by the regulatory agencies.

References

References
1.
Code of Federal Regulations: Aeronautics and Space, 1990, Art. 33.76, Vol.
14
, Office of the Federal Register, National Archives and Record Administration, Washington, DC.
2.
Georgiadis
,
S.
,
Gunnion
,
A. J.
,
Thomson
,
R. S.
, and
Cartwright
,
B. K.
, 2008, “
Bird-Strike Simulation for Certification of the Boeing 787 Composite Moveable Trailing Edge
,”
Compos. Struct.
,
86
(
1–3
), pp.
258
268
.
3.
Niering
,
E.
, 1990, “
Simulation of Bird Strikes on Turbine Engines
,”
ASME J. Eng. Gas Turbines Power
,
112
, pp.
573
578
.
4.
Martin
,
N. F.
, Jr.
, 1990, “
Nonlinear Finite-Element Analysis to Predict Fan Blade Damage Soft Body Impact
,”
J. Propul.
86
, pp.
445
450
.
5.
Vasco
,
T. J.
, 2000, “
Fan Blade Bird-Strike Analysis and Design
,”
Proceedings of the 6th International LS-DYNA Users Conference
,
Detroit, MI
, Session 9–2, April 9−10,LSTC, Livermore, CA.
6.
Jain
,
R.
, and
Ramchandra
,
K.
, 2003, “
Bird Impact Analysis of Pre-Stressed Fan Blades using Explicit Finite Element Code
,”
IGTC 2003 Tokyo TS–009, Proceedings of the Int. Gas Turbine Congress
,
Tokyo, Japan
November 2−7, IGTI, Norcross, GA., pp.
7
.
7.
Frischbier
,
J.
, and
Kraus
,
A.
, 2005, “
Multiple Stage Turbofan Bird Ingestion Analysis with ALE and SPH Methods
,”
XVII International Symposium on Air Breathing Engines (ISABE)
, Munich, Germany, Sept. 4−9, 2005, Paper No. ISABE–2005–1016
American Institute of Aeronautics and Astronautics
, AIAA,
Reston, VA
.
8.
Shmotin
,
Y. N.
,
Chupin
,
P. V.
,
Gabov
,
D. V.
,
Ryabov
,
A. A.
,
Romanov
,
V. I.
, and
Kukanov
,
S. S.
, 2009, “
Bird Strike Analysis of Aircraft Engine Fan
,”
Proceedings of the 7th European LS-DYNA Users Conference
,
Salzburg, Austria
, May 14−19, LSTC, Livermore, CA.
9.
McCarthy
,
M. A.
,
Xiao
,
J. R.
,
McCarthy
,
C. T.
,
Kamoulakos
,
A.
,
Ramos
,
J.
,
Gallaard
,
J. P.
, and
Melito
,
V.
, 2004, “
Modeling of Bird-Strike on an Aircraft Wing Leading Edge Made From Fiber Metal Laminates
,”
Appl. Compos. Mater.
,
11
(
5
), pp.
317
340
.
10.
Goyal
,
V. K.
,
Huertas
,
C. A.
,
Borrero
,
J. R.
, and
Leutwiler
,
T. R.
, 2006, “
Robust Bird-Strike Modeling Based on ALE Formulation Using LS-DYNA
,”
47th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference
, Newport, Rhode Island, 4 May 2006, AIAA Paper No. 2006–1759, AIAA, Reston, VA.
18
pp.
11.
Schwer
,
L. E.
, and
Whirley
,
R. G.
, 1999, “
Impact of a 3D Woven Textile Composite Thin Panel: Damage and Failure Modeling
,”
Mech. Compos. Mater. Struct.
6
(
1
), pp.
9
30
.
12.
Langrand
,
B.
,
Bayart
,
A. S.
,
Chauveau
,
Y.
, and
Deletombe
,
E.
, 2002, “
Assessment of Multi-Physics Fe Methods for Bird Strike Modelling - Application to a Metallic Riveted Airframe
,”
Int. J. Crashworthiness
,
7
(
4
), pp.
415
428
.
13.
Anghileri
,
M.
,
Castelletti
,
L. L.
,
Invernizzi
,
F.
, and
Mascheroni
,
M.
, 2005, “
Birdstrike onto the Composite Intake of a Turbofan Engine
,”
Proceedings of the 5th European LS-DYNA Users Conference
,
Birmingham, UK
, May 25−26, LSTC, Livermore, CA.
14.
McCallum
,
S. C.
, and
Constantinou
,
C.
The Influence of Bird-Shape in Bird-Strike Analysis
,”
Proc. 5th European LS-DYNA Users Conference
,
Birmingham, UK
, May 25−26, 2005.
15.
Johnson
,
A. F.
, and
Holzapfel
,
M.
, 2006, “
Numerical Prediction of Damage in Composite Structures From Soft Body Impacts
,”
J. Mater. Sci.
,
41
(
20
), pp.
6622
6630
.
16.
Smojver
,
I.
, and
Ivančević
,
D.
, 2010, “
Numerical Simulation of Bird Strike Damage Prediction in Airplane Flap Structure
,”
Compos. Struct.
92
(
9
), pp.
2016
2026
.
17.
Guida
,
M.
,
Marulo
,
F.
,
Polito
,
T.
,
Meo
,
M.
, and
Riccio
,
M.
, 2009, “
Design and Testing of a Fiber-Metal-Laminate Bird-Strike-Resistant Leading Edge
,”
J. of Aircr.
,
46
(
6
), pp.
2121
2129
.
18.
Sinha
,
S. K.
, and
Jain
,
N.
, 2007, “
Soft-Body Impact on Jet Engine Components Made-Up of Composites
,”
International SAMPE Technical Conference
,
Cincinnati, OH
. SAMPE, Covina, CA.
19.
Kermanidis
,
T.
,
Labeas
,
G.
,
Sunaric
,
M.
,
Johnson
,
A. F.
, and
Holzapfel
,
M.
, 2006, “
Bird Strike Simulation on a Novel Composite Leading Edge Design
,”
Int. J. Crashworthiness
,
11
(
3
), pp.
189
201
.
20.
McCarthy
,
M. A.
,
Xiao
,
J. R.
,
Petrinic
,
N.
,
Kamoulakos
,
A.
, and
Melito
,
V.
, 2005, “
Modelling Bird Impacts on an Aircraft Wing - Part 1: Material Modelling of the Fibre Metal Laminate Leading Edge Material With Continuum Damage Mechanics
,”
Int. J. Crashworthiness
,
10
(
1
), pp.
41
49
.
21.
Xinjun
,
W.
,
Zhenzhou
,
F.
,
Fusheng
,
W.
, and
Zhufeng
,
Y.
, 2007, “
Dynamic Response Analysis of Bird Strike on Aircraft Windshield Based on Damage-Modified Nonlinear Viscoelastic Constitutive Relation
,”
Chin. J. Aeronaut.
,
20
, pp.
511
517
.
22.
Guida
,
M.
,
Marulo
,
F.
,
Meo
,
M.
, and
Riccio
,
M.
, 2008, “
Analysis of Bird Impact on a Composite Tailplane Leading Edge
,”
Appl. Compos. Mater.
15
, pp.
241
257
.
23.
Hanssen
,
A. G.
,
Girard
,
Y.
,
Olovsson
,
L.
,
Berstad
,
T.
, and
Langseth
,
M.
, 2006, “
A Numerical Model for Bird Strike of Aluminum Foam-Based Sandwich Panels
,”
Int. J. Impact Eng.
,
32
, pp.
1127
1144
.
24.
Airoldi
,
A.
, and
Cacchione
,
B.
, 2006, “
Modelling of Impact Forces and Pressures in Lagrangian Bird Strike Analyses
,”
Int. J. Impact Eng.
,
32
, pp.
1651
1677
.
25.
Teichman
,
H. C.
, and
Tadros
,
R. N.
, 1991, “
Analytical and Experimental Simulation of Fan Blade Behavior and Damage Under Bird Impact
,”
ASME J. Eng. Gas Turbines Power
,
113
, pp.
582
594
.
26.
Mao
,
R. H.
,
Meguid
,
S. A.
, and
Ng
,
T. Y.
, 2008, “
Transient Three Dimensional Finite Element Analysis of a Bird Striking a Fan Blade
,”
Int. J. Mech. Mater. Des.
,
4
(
1
), pp.
79
96
.
27.
Lavoie
,
M.-A.
,
Gakwaya
,
A.
,
Ensam
,
M. N.
, and
Zimcik
,
D. G.
, 2007, “
Review of Existing Numerical Methods and Validation Procedure Available for Bird Strike Modeling
,”
Int. Conf. Comp. Exp. Eng. Sci.. (ICCES)
,
2
(
4
), pp.
111
118
.
28.
Nizampatnam
,
L. S.
, 2007, “
Models and Methods for Bird Strike Load Predictions
,”
Ph.D. thesis
,
Wichita State University
,
Wichita, KS
.
29.
Khulief
,
Y. A.
, 2010, “
Numerical Modeling of Impulsive Events in Mechanical Systems
,”
Int. J. Model. Simulat.
30
(
1
), pp.
80
86
.
30.
Shivkumar
,
K. N.
,
Elber
,
W.
, and
Illg
,
W.
, 1985, “
Prediction of Impact Force and Duration Due to Low-Velocity Impact on Circular Composite Laminates
,”
ASME J. Appl. Mech.
,
52
(
3
), pp.
674
680
.
31.
Sinha
,
S. K.
, and
Zentner
,
M. M.
, 1986, “
Dynamic Bending Stresses in Thin Elastic Plates Due to Impact by Spherical Projectile
,”
10th U.S. National Congress of Applied Mechanics
,
University of Texas at Austin
,
TX
.
32.
Doyle
,
J. F.
, 1987, “
Experimentally Determining the Contact Force During the Transverse Impact of an Orthotropic Plate
,”
J. Sound Vib.
118
(
3
), pp.
441
448
.
33.
Hemmi
,
K.
,
Nishikawa
,
M.
, and
Takeda
,
N.
, 2008, “
Prediction of the Foreign-Object Impact Force on the Composite Fan Blade
,”
Design, Manufacturing and Applications of Composites: Proceedings of the 7th Joint Canada-Japan Workshop on Composites
, pp.
101
108
.
34.
Wilbeck
,
J. S.
, and
Rand
,
J. L.
, 1981, “
The Development of a Substitute Bird Model
,”
ASME J. Eng. Power
,
103
, pp.
725
730
.
35.
Kim
,
H.
, and
Kedward
,
K. T.
, 2000, “
Modeling Hail Ice Impacts and Predicting Impact Damage Initiation in Composite Structures
,”
AIAA J.
,
38
(
7
), pp.
1278
1288
.
36.
Fehlberg
,
E.
, 1964, “
New High Order Runge-Kutta Formulas With Stepsize Control for Systems of First- and Second Order Differential Equations
,”
ZAMM
,
44
, pp.
17
29
.
37.
Olsson
,
R.
, 2003, “
Closed Form Prediction of Peak Load and Delamination Onset Under Small Mass Impact
,”
Compos. Struct.
59
, pp.
341
349
.
38.
Van Paepegema
,
W.
,
Shulev
,
A.
,
Moentjens
,
A.
,
Harizanova
,
J.
,
Degrieck
,
J.
, and
Sainov
,
V.
, 2008, “
Use of Projection Moiré for Measuring the Instantaneous Out-of-Plane Deflections of Composite Plates Subject to Bird Strike
,”
Opt. Lasers Eng.
,
46
, pp.
527
534
.
39.
Timoshenko
,
S.
, and
Woinowsky-Krieger
,
S.
, 1959,
Theory of Plates and Shells
2nd ed.
,
McGraw-Hill
,
New York
, pp.
378
380
.
40.
Sinha
,
S. K.
, and
Turner
,
K. E.
, 2011, “
Natural Frequencies of a Pre-Twisted Blade in a Centrifugal Force Field
,”
J. Sound Vib.
330
(
11
), pp.
2655
2681
.
41.
Chen
,
G.
,
Coleman
,
M. P.
, and
Liu
,
K.
, 1998, “
Boundary Stabilization of Donnell’s Shallow Circular Cylindrical Shell
,”
J. Sound Vib.
209
(
2
), pp.
265
298
.
42.
Sinha
,
S. K.
, 2007, “
Combined Torsional-Bending-Axial Dynamics of a Twisted Rotating Cantilever Timoshenko Beam With Contact-Impact Loads at the Free End
,”
ASME J. Appl. Mech.
,
74
, pp.
505
522
.
43.
Sinha
,
S. K.
, and
Dorbala
,
S.
, 2009, “
Dynamic Loads in the Fan Containment Structure of a Turbofan Engine
,”
ASCE J. Aerospace Eng.
,
22
(
3
), pp.
260
269
.
You do not currently have access to this content.