Least-squares-based methods are very popular in the jet engine community for health monitoring purpose. Their isolation capability can be improved by using a prior knowledge on the health parameters that better matches the expected pattern of the solution i.e., a sparse one as accidental faults impact at most one or two component(s) simultaneously. On the other hand, complimentary information about the feasible values of the health parameters can be derived in the form of constraints. The present contribution investigates the effect of the addition of such constraints on the performance of the sparse estimation tool. Due to its quadratic programming formulation, the constraints are integrated in a straightforward manner. Results obtained on a variety of fault conditions simulated with a commercial turbofan model show that the inclusion of constraints further enhance the isolation capability of the sparse estimator. In particular, the constraints help resolve a confusion issue between high pressure compressor and variable stator vanes faults.

References

1.
Volponi
,
A. J.
, 2003, “
Foundation of Gas Path Analysis (Parts I and II)
,”
Gas Turbine Condition Monitoring and Fault Diagnosis
(von Karman Institute Lecture Series No. 10), von Karman Institute, Brussels.
2.
Marinai
,
L.
,
Probert
,
D.
, and
Singh
,
R.
, 2004, “
Prospects for Aero Gas-Turbine Diagnostics: A Review
,”
Appl. Energy
,
79
, pp.
109
126
.
3.
Provost
,
M. J.
, 1994, “
The Use of Optimal Estimation Techniques in the Analysis of Gas Turbines
,” Ph.D. thesis, Cranfield University, Cranfield, UK.
4.
Borguet
,
S.
, and
Léonard
,
O.
, 2010, “
A Sparse Estimation Approach to Fault Isolation
,”
ASME J. Eng. Gas Turbines Power
,
132
,
p.
021601
.
5.
Simon
,
D.
, and
Simon
,
D. L.
, 2003, “
Aircraft Turbofan Engine Health Estimation Using Constrained Kalman Filtering
,”ASME Paper No.GT2003–38584.
6.
Simon
,
D.
, and
Simon
,
D. L.
, 2005, “
Kalman Filter Constraint Tuning for Turbo-Fan Engine Health Estimation
,”
Technical Memorandum TM-2005–213962
,
NASA
.
7.
Dewallef
,
P.
,
Mathioudakis
,
K.
, and
Léonard
,
O.
, 2004, “
On-Line Aircraft Engine Diagnostic Using a Soft-Constrained Kalman Filter
,” ASME Paper No. GT2004–53539.
8.
Murakami
,
K.
, and
Seborg
,
D.
, 2000, “
Constrained Parameter Estimation With Applications to Blending Operations
,”
J. Process Control
,
10
, pp.
195
202
.
9.
Doel
,
D. L.
, 1994, “
An Assessment of Weighted-Least-Squares-Based Gas Path Analysis
,”
ASME J. Eng. Gas Turbines Power
,
116
, pp.
366
373
.
10.
Fuchs
,
J. J.
, 2004, “
On Sparse Representations in Arbitrary Redundant Basis
,”
IEEE Trans. Inf. Theory
,
50
, pp.
1341
1344
.
11.
Fuchs
,
J. J.
, 2004, “
Recovery of Exact Sparse Representations in the Presence of Noise
,”
IEEE International Conference on Acoustics, Speech and Signal Processing
, Vol.
2
,
IEEE
,
Montréal, QC, Canada
, pp.
1341
1344
.
12.
Fletcher
,
R.
, 2000,
Practical Methods of Optimization
,
Wiley
,
New York
.
13.
Ogaji
,
S.
,
Sampath
,
S.
,
Singh
,
R.
, and
Probert
,
S.
, 2002, “
Parameter Selection for Diagnosing a Gas-Turbine’s Performance Deterioration
,”
Appl. Energy
,
73
(
1
),
25
46
.
14.
Volponi
,
A.
,
DePold
,
H.
,
Ganguli
,
R.
, and
Daguang
,
C.
, 2003, “
The Use of Kalman Filter and Neural Network Methodologies in Gas Turbine Performance Diagnostic: A Comparative Study
,”
ASME J. Eng. Gas Turbines Power
,
125
, pp.
917
924
.
15.
Simon
,
D. L.
,
Bird
,
J.
,
Davison
,
C.
,
Volponi
,
A. J.
, and
Iverson
,
R. E.
, 2008, “
Benchmarking Gas Path Diagnostic Methods: A Public Approach
,”ASME Paper No. GT2008–51360.
16.
Doel
,
D. L.
, 2003, “
Interpretation of Weighted-Least-Squares Gas Path Analysis Results
,”
ASME J. Eng. Gas Turbines Power
,
125
(
3
), pp.
624
633
.
17.
Meszaros
,
C.
, 1996, “
Fast Cholesky Factorization for Interior Point Methods of Linear Programming
,”
Comput. Math. Appl.
,
31
(
4–5
), pp.
49
54
.
18.
Stamatis
,
A.
,
Mathioudakis
,
K.
,
Ruiz
,
J.
, and
Curnock
,
B.
, 2001, “
Real-Time Engine Model Implementation for Adaptive Control and Performance Monitoring of Large Civil Turbofans
,”ASME Paper No. 2001-GT-0362.
19.
Aretakis
,
N.
,
Mathioudakis
,
K.
, and
Stamatis
,
A.
, 2003, “
Non-Linear Engine Component Fault Diagnosis From a Limited Number of Measurements Using a Combinatorial Approach
,”
ASME J. Eng. Gas Turbines Power
,
125
(
3
), pp.
642
650
.
20.
Roth
,
B. A.
,
Doel
,
D. L.
, and
Cissell
,
J. J.
, 2005, “
Probabilistic Matching of Turbofan Performance Models to Test Data
,” ASME Paper No. GT2005–68201.
21.
Fuchs
,
J. J.
, 2006, “
Recovery Conditions of Sparse Representations in the Presence of Noise
,”
IEEE International Conference on Acoustics, Speech and Signal Processing
, Vol.
3
, Toulouse, France, pp.
337
340
.
22.
Borguet
,
S.
, and
Léonard
,
O.
, 2009, “
A Generalized Likelihood Ratio Test for Adaptive Gas Turbine Performance Monitoring
,”
ASME J. Eng. Gas Turbines Power
,
131
, p.
011601
.
You do not currently have access to this content.