In the gas turbine industry, computational fluid dynamics (CFD) simulations are often used to predict and visualize the complex reacting flow dynamics, combustion environment and emissions performance of a combustor at the design stage. Given the complexity involved in obtaining accurate flow predictions and due to the expensive nature of simulations, conventional techniques for CFD based combustor design optimization are often ruled out, primarily due to the limits on available computing resources and time. The design optimization process normally requires a large number of analyses of the objective and constraint functions which necessitates a careful selection of fast, reliable and efficient computational methods for the CFD analysis and the optimization process. In this study, given a fixed computational budget, an assessment of a co-Kriging based optimization strategy against a standard Kriging based optimization strategy is presented for the design of a 2D combustor using steady and unsteady Reynolds-averaged Navier Stokes (RANS) formulation. Within the fixed computational budget, using a steady RANS formulation, the Kriging strategy successfully captures the underlying response; however with unsteady RANS the Kriging strategy fails to capture the underlying response due to the existence of a high level of noise. The co-Kriging strategy is then applied to two design problems, one using two levels of grid resolutions in a steady RANS formulation and the other using steady and unsteady RANS formulations on the same grid resolution. With the co-Kriging strategy, the multifidelity analysis is expected to find an optimum design in comparatively less time than that required using the high-fidelity model alone since less high-fidelity function calls should be required. However, using the applied computational setup for co-Kriging, the Kriging strategy beats the co-Kriging strategy under the steady RANS formulation whereas under the unsteady RANS formulation, the high level of noise stalls the co-Kriging optimization process.

References

References
1.
Mongia
,
H. C.
, 2001, “
A Synopsis of Gas Turbine Combustor Design Methodology Evolution of Last 25 Years
,” Paper No. ISABE-2001-1086.
2.
Mongia
,
H. C.
, 1998, “
Aero-Thermal Design and Analysis of Gas Turbine Combustion Systems: Current Status and Future Direction
,” AIAA Paper No. 98-3982.
3.
Nightingale
,
P.
, 2000, “
The Product-Process-Organization Relationship in Complex Development Projects
,” Research Policy, Elsevier, Vol.
29
, pp.
913
930
.
4.
Anand
,
M. S.
, and
Priddin
,
C. H.
, 2001, “
Combustion CFD – A Key Driver to Reducing Development Cost and Time
,”
15th International Symposium on Air Breathing Engines
,
Bangalore, India
. Paper No. ISABE-2001-1087.
5.
Lefebvre
,
A. H.
, 1999,
Gas Turbine Combustion
,
Taylor and Francis
,
Philadelphia, PA
.
6.
Wankhede
,
M. J.
,
Bressloff
,
N. W.
,
Keane
,
A. J.
,
Caracciolo
,
L.
, and
Zedda
,
M.
, 2010, “
An Analysis of Unstable Flow Dynamics and Flashback Mechanism Inside a Swirl-Stabilised Lean Burn Combustor
,”
Proc. ASME Turbo Expo 2010: Power for Land
,
Sea and Air
,
Glasgow, UK
, Paper No. GT2010-22253.
7.
Lockwood
,
F. C.
,
Abbas
,
T.
,
Kandamby
,
N. H.
, and
Sakthitharan
,
V.
, 2001, “
CFD Experience on Industrial Combustors
,”
Prog. Comput. Fluid Dyn.
,
1
(
1–3
), pp.
1
13
.
8.
Motsamai
,
O. S.
, 2008, “
Optimisation Techniques for Combustor Design
,” Ph.D thesis, University of Pretoria, South Africa.
9.
Epstein
,
B.
,
Peigin
,
S.
, and
Tsach
,
S.
, 2006, “
A New Efficient Technology of Aerodynamic Design Based on CFD Driven Optimization
,”
Aerosp. Sci. Technol.
,
10
, pp.
100
110
.
10.
Lighthill
,
M. J.
, 1945, “
A New Method of Two-Dimensional Aerodynamic Design
,” Aeronautical Research Council, London, Rand Report No. M 2112.
11.
Bauer
,
F.
,
Garabedian
,
P.
,
Korn
,
D.
, and
Jameson
,
A.
, 1975,
Supercritical Wing Sections II
,
Springer Verlag
,
New York
.
12.
Hicks
,
R. M.
, and
Henne
,
P. A.
, 1978, “
Wing Design by Numerical Optimization
,”
J. Aircr.
, Vol.
15/4
, pp.
407
412
.
13.
Jameson
,
A.
,
Martinelli
,
L.
, and
Vassberg
,
J.
, 2002, “
Using Computational Fluid Dynamics for Aerodynamics – A Critical Assessment
,”
In Proc. ICAS 2002
,
Toronto
.
14.
Jameson
,
A.
, Shankaran, S., Matinelli, L., and Haimes, B., 2004, “
Aerodynamics Shape Optimisation of Complete Aircraft Configurations Using Unstructured Grids
,”
42nd AIAA Aerospace Science Meeting and Exhibit
, AIAA Paper No. 2004-0533.
15.
Mohammadi
,
B.
, 2002, “
Optimisation of Aerodynamic and Acoustic Performances of Supersonic Civil Transports
,”
Proc. of the Summer Program
,
Center for Turbulence Research, Stanford University
,
CA
, pp.
285
296
.
16.
Robinson
,
T. D.
,
Eldred
,
M. S.
,
Willcox
,
K. E.
, and
Haimes
,
R.
, 2008, “
Surrogate-Based Optimization Using Multifidelity Models with Variable Parameterization and Corrected Space Mapping
,”
AIAA J.
, Vol.
46/11
.
17.
Forrester
,
A. I. J.
,
Sobester
,
A.
, and
Keane
,
A. J.
, 2008,
Engineering Design via Surrogate Modelling: A Practical Guide
,
Wiley
,
Chichester, UK
.
18.
Keane
,
A. J.
, and
Nair
,
P. B.
, 2005,
Computational Approaches for Aerospace Design
,
Wiley
,
Chichester, UK
.
19.
Jeong
,
S.
,
Minemura
,
Y.
, and
Obayashi
,
S.
, 2006, “
Optimisation of Combustion Chamber for Diesel Engine using Kriging Model
,”
J. Fluid Sci. Technol.
1
(
2
), pp.
138
146
.
20.
Duchaine
,
F.
,
Morel
,
T.
, and
Gicquel
,
L. Y. M.
, 2009, “
Computational-Fluid-Dynamics-Based Kriging Optimization Tool for Aeronautical Combustion Chambers
,”
AIAA J.
, Vol.
47/3
.
21.
Renard
,
P. H.
,
Thevenin
,
D.
,
Rolon
,
J. C.
, and
Candel
,
S.
, 2000, “
Dynamics of Flame/Vortex Interactions
,”
Progress in Energy and Combustion Sciences
,
26
(
3
), pp.
225
282
.
22.
Keller
,
J. O.
,
Vaneveld
,
L.
,
Korschelt
,
D.
,
Hubbard
,
G. L.
,
Ghoniem
,
A. F.
,
Daily
,
J. W.
, and
Oppenheim
,
A. K.
, 1982, “
Mechanism of Instabilities in Turbulent Combustion Leading to Flashback
,”
AIAA J.
, Vol.
20
, pp.
254
262
.
23.
Najm
,
H. N.,
and
Ghoniem
,
A. F.
, 1994, “
Coupling Between Vorticity and Pressure Oscillations in Combustion Instability
,”
J. Propul. Power
,
10
(
6
), pp.
769
776
.
24.
Thibaut
,
D.
, and
Candel
,
S.
, 1998, “
Numerical Study of Unsteady Turbulent Premixed Combustion: Application to Flashback Simulation
,”
Combust. Flame
,
113
, pp.
53
65
.
25.
User’s Guide, 2010, ANSYS FLUENTTM Version 12.1.
26.
Poinsot
,
T.
and
Veynante
,
D.
, 2005,
Theoretical and Numerical Combustion
,
Edwards
,
Ann Arbor, MI
.
27.
Poinsot
,
T. J.
,
Trouve
,
A. C.
,
Veynante
,
D. P.
,
Candel
,
S. M.
, and
Esposito
,
E. J.
, 1987, “
Vortex-driven Acoustically Coupled Combustion Instabilities
,”
J. Fluid Mech.
,
177
, pp.
265
292
.
28.
Venkataraman
,
K. K.
,
Lee
,
B. J.
,
Preston
,
L. H.
,
Simons
,
D. W.
,
Lee
,
J. G.
, and
Santavicca
,
D. A.
, 1999, “
Mechanism of Combustion Instability in a Lean Premixed Dump Combustor
,”
J. Propul. Power
,
15/6
, pp.
909
918
.
29.
Cohen
,
J. M.
, and
Anderson
,
T., J.
, 1999, “
Experimental Investigation Near Blow Out I nstabilities in a Lean Premixed Step Combustor
,” AIAA Paper No. 96-0819, 34th Aerospace Sciences Meeting, Reno, NV.
30.
Ghoniem
,
A. F.
,
Annaswamy
,
A.
,
Park
,
S.
, and
Sobhani
,
Z. C.
, 2005, “
Stability and Emissions Control Using Air Injection and H2 Addition in Premixed Combustion
,”
Proc. Combustion Institute
, Vol.
30
, pp
1765
1773
.
31.
Spadaccini
,
L. J.
, 1974, “
Low Emission Combustors for Gas Turbine Power plants
,”
Combust. Sci. Technol.
,
9
, pp.
133
136
.
32.
Lefebvre
,
A. H.
, 1977, “
Lean Premixed/Prevaporized Combustion
,” Paper No. NASA CP-2016.
33.
Weiss
,
D.
, 2010, “
Feature Based Spline Optimization in CAD: A Step Towards Geometry-Based Structure Creation
,”
Struct. Multidiscip. Optim.
,
42
(
4
), pp.
619
631
.
34.
Toal
,
D. J. J.
,
Bressloff
,
N. W.
, and
Keane
,
A. J.
, 2008, “
Kriging Hyperparameter Tuning Strategies
,”
AIAA J.
,
46
(
5
), pp.
1240
1252
.
35.
Krige
,
D.
, 1951, “
A Statistical Approach to Some Basic Mine Valuation Problems on the Witwatersrand,” Journal of the Chemical
,
Metallurgical and Mining Engineering Society of South Africa
,
52
(
6
), pp.
119
139
.
36.
Jones
,
D. R.
, 2001, “
A Taxonomy of Global Optimization Methods Based on Response Surfaces
,”
Journal of Global Optimization
,
21
(
4
), pp.
345
383
.
37.
Sacks
,
J.
,
Welch
,
W. J.
,
Mitchell
,
T. J.
, and
Wynn
,
H. P.
, 1989, “
Design and Analysis of Computer Experiments
,”
Statistical Science
,
4
(
4
), pp.
409
435
.
38.
Keane
,
A. J.
, 2004,
OPTIONS Design Exploration System
, http://www.soton.ac.uk/~ajkhttp://www.soton.ac.uk/~ajk.
39.
Forrester
,
A. I. J.
,
Keane
,
A.
, and
Bressloff
,
N. W.
, 2006, “
Design and Analysis of Noisy Computer Experiments
,”
AIAA J.
,
44
(
10
), pp.
2331
2339
.
40.
Kennedy
,
M.
, and
O’Hagan
,
A.
, 2000, “
Predicting the Output From a Complex Computer Code When Fast Approximations are Available
,”
Biometrika
,
87
, pp.
1
13
.
41.
Forrester
,
A. I. J.
,
Sobester
,
A.
, and
Keane
,
A. J.
, 2007, “
Multi-Fidelity Optimization via Surrogate Modelling
,”
Proc. of the Royal Society of London, Ser. A
,
463
, pp.
3251
3269
.
You do not currently have access to this content.