Imaging of OH* or CH* chemiluminescence with intensified cameras is often employed for the determination of heat release in premixed flames. Proportionality is commonly assumed, but in the turbulent case this assumption is not justified. Substantial deviations from proportionality are observed, which are due to turbulence-chemistry interactions. In this study a model based correction method is presented to obtain a better approximation of the spatially resolved heat release rate of lean turbulent flames from OH* measurements. The correction method uses a statistical strain rate model to account for the turbulence influence. The strain rate model is evaluated with time-resolved velocity measurements of the turbulent flow. Additionally, one-dimensional simulations of strained counterflow flames are performed to consider the nonlinear effect of turbulence on chemiluminescence intensities. A detailed reaction mechanism, which includes all relevant chemiluminescence reactions and deactivation processes, is used. The result of the simulations is a lookup table of the ratio between heat release rate and OH* intensity with strain rate as parameter. This lookup table is linked with the statistical strain rate model to obtain a correction factor which accounts for the nonlinear relationships between OH* intensity, heat release rate, and strain rate. The factor is then used to correct measured OH* intensities to obtain the local heat release rate. The corrected intensities are compared to heat release distributions which are measured with an alternative method. For all investigated flames in the lean, partially premixed regime the corrected OH* intensities are in very good agreement with the heat release rate distributions of the flames.

References

References
1.
Auer
,
M.
,
Gebauer
,
C.
,
Mösl
,
K.
,
Hirsch
,
C.
, and
Sattelmayer
,
T.
, 2005, “
Feedback of Combustion Instabilities on the Injection of Gaseous Fuel
,”
ASME J. Eng. Gas Turbines Power
,
127
, pp.
748
754
.
2.
Auer
,
M.
,
Hirsch
,
C.
, and
Sattelmayer
,
T.
, 2005, “
Influence of the Interaction of Equivalence Ratio and Mass Flow Fluctuation on Flame Dynamics
,”
Proceedings of the ASME Turbo Expo
.
3.
Freitag
,
E.
,
Konle
,
H.
,
Lauer
,
M.
,
Hirsch
,
C.
, and
Sattelmayer
,
T.
, 2006, “
Pressure Influence on the Flame Transfer Function of a Premixed Swirling Flame
,”
Proceedings of the ASME Turbo Expo
.
4.
Konle
,
M.
,
Kiesewetter
,
F.
, and
Sattelmayer
,
T.
, 2008, “
Simultaneous High Repetition Rate PIV-LIF Measurements of CIVB Driven Flashback
,”
Exp. Fluids
44
, pp.
529
538
.
5.
Konle
,
M.
, and
Sattelmayer
,
T.
, 2010, “
Time Scale Model for the Prediction of the Onset of Flame Flashback Driven by Combustion Induced Vortex Breakdown
,”
ASME J. Eng. Gas Turbines Power
132/4
, p.
041503
.
6.
Wäsle
,
J.
,
Winkler
,
A.
, and
Sattelmayer
,
T.
, 2005, “
Spatial Coherence of the Heat Release Fluctuations in Turbulent Jet and Swirl Flames
,”
Flow Turbulence Combustion
75
, pp.
29
50
.
7.
Wäsle
,
J.
,
Winkler
,
A.
,
Lauer
,
M.
, and
Sattelmayer
,
T.
, 2007, “
Combustion Noise Modeling Using Chemiluminescence Data as Indicator for the Heat Release Distribution
,”
Proceedings of European Combustion Meeting
.
8.
Ayoola
,
B.
,
Balachandran
,
R.
,
Frank
,
J.
,
Mastorakos
,
E.
, and
Kaminski
,
C.
, 2006, “
Spatially Resolved Heat Release Rate Measurements in Turbulent Premixed Flames
,”
Combustion Flame
,
144
, pp.
1
16
.
9.
Balachandran
,
R.
,
Ayoola
,
B.
,
Kaminski
,
C.
,
Dowling
,
A.
, and
Mastorakos
,
E.
, 2005, “
Experimental Investigation of the Nonlinear Response of Turbulent Premixed Flames to Imposed Inlet Velocity Oscillations
,”
Combustion Flame
143
, pp.
37
55
.
10.
Clark
,
T.
, and
Bittker
,
D.
, 1954, “
A Study of the Radiation From Laminar and Turbulent Open Propane-Air Flames as a Function of Flame Area, Equivalence Ratio, and Fuel Flow Rate
,”
National Advisory Committee for Aeronautics
,
Lewis Flight Propulsion Laboratory Cleveland
,
Ohio
.
11.
John
,
R.
, and
Summerfield
,
M.
, 1957, “
Effect of Turbulence on Radiation Intensity From Propane-Air Flames
,”
Jet Propulsion
,
27
, pp.
169
179
.
12.
Hurle
,
I.
,
Price
,
R.
,
Sugden
,
T.
, and
,
Thomas
,
A.
, 1968, “
Sound Emission From Open Turbulent Premixed Flames
,”
Proc. R. Soc., London
303
, pp.
409
427
.
13.
Samaniego
,
J.-M.
,
Egolfopoulos
,
F.
, and
Bowman
,
C.
, 1995, “
CO 2 * Chemiluminescence in Premixed Flames
,”
Combustion Sci. Technol
., 109, pp. 183–203.
14.
Haber
,
L.
,
Vandsburger
,
U.
,
Saunders
,
W.
, and
Khanna
,
V.
, 2000, “
An Examination of the Relationship Between Chemiluminescent Light Emissions and Heat Release Rate Under Non-Adiabatic Conditions
,”
Proceedings of International Gas Turbine Institute
.
15.
Hardalupas
,
Y.
, and
Orain
,
M.
, 2004, “
Local Measurements of the Time-Dependent Heat Release Rate and Equivalence Ratio Using Chemiluminescent Emission From a Flame
,”
Combustion Flame
,
139
, pp.
188
207
.
16.
Lauer
,
M.
, and
Sattelmayer
,
T.
, 2010, “
On the Adequacy of Chemiluminescence as a Measure for Heat Release in Turbulent Flames With Mixture Gradients
,”
J. Eng. Gas Turbines Power
,
132/6
, p.
061502
.
17.
Peters
,
N.
, 1986, “
Laminar Flamelet Concepts in Turbulent Combustion
,”
Int. Symp. Combustion
,
21
, pp.
1231
1250
.
18.
Yeung
,
P.
,
Girimaji
,
S.
, and
Pope
,
S.
, 1990, “
Straining and Scalar Dissipation on Material Surfaces in Turbulence: Implications for Flamelets
,”
Combustion Flame
,
79
, pp.
340
365
.
19.
Kathrotia
,
T.
,
Riedel
,
U.
, and
Warnatz
,
J.
, 2009, “
A Numerical Study on the Relation of OH*, CH*, and C2* Chemiluminescence and Heat Release in Premixed Methane Flames
,”
Proceedings of the European Combustion Meeting
.
20.
Wäsle
,
J.
,
Winkler
,
A.
,
Rößle
,
E.
, and
Sattelmayer
,
T.
, 2006, “
Development of an Annular Porous Burner for the Investigation of Adiabatic Unconfined Flames
,” in
Proceedings of 13th International Symposium on Applications of Laser Techniques to Fluid Mechanics
.
21.
Dribinski
,
V.
,
Ossadtchi
,
A.
,
Mandelshtam
,
V.
, and
Reisler
,
H.
, 2002, “
Reconstruction of Abel-Transformable Images: The Gaussian Basis-Set Expansion Abel Transform Method
,”
Rev. Sci. Instrum.
,
73
, pp.
2634
2642
.
22.
Mandel
,
J.
, 1984,
The Statistical Analysis of Experimental Data,
Dover Publications
,
London
.
23.
Pope
,
S.
, 2000,
Turbulent Flows,
Cambridge University Press
,
Cambridge
.
24.
Hinze
,
J.
, and
Clark
,
B.
, 1975,
Turbulence
,
2nd ed.
,
McGraw-Hill
,
New York
.
25.
Lauer
,
M.
, and
Sattelmayer
,
T.
, 2007, “
Luftzahlmessung in Einer Turbulenten Drallflamme auf Basis Spektral Aufgelöster Chemilumineszenz
,”
VDI-Berichte 1988
, pp.
735
741
.
26.
Lauer
,
M.
, and
Sattelmayer
,
T.
, 2008, “
Heat Release Calculation in a Turbulent Swirl Flame From Laser and Chemiluminescence Measurements
,”
14th International Symposium on Applications of Laser Techniques to Fluid Mechanics
.
27.
Haber
,
L.
, 2000, “
An Investigation Into the Origin, Measurement and Application of Chemiluminescent Light Emissions From Premixed Flames
,”
M.Sc. thesis
,
Virginia Polytechnic Institute and State University
.
28.
Nori
,
V.
, and
Seitzman
,
J.
, 2007, “
Chemiluminescence Measurements and Modeling in Syngas, Methane and Jet-a Fueled Combustors
,”
Proceedings of the 45th AIAA Aerospace Sciences Meeting and Exhibit
.
29.
Guyot
,
D.
,
Guethe
,
F.
,
Schuermans
,
B.
,
Lacarelle
,
A.
, and
Paschereit
,
O.
, 2010, “
CH*/OH* Chemiluminescence Response of an Atmospheric Premixed Flame Under Varying Operation Conditions
,”
Proceedings of ASME Turbo Expo
.
30.
Yeung
,
P.
, and
Pope
,
S.
, 1989, “
Lagrangian Statistics From Direct Numerical Simulations of Isotropic Turbulence
,”
J. Fluid Mech.
,
207
, pp.
531
568
.
31.
Pope
,
S.
, 1987, “
Turbulent Premixed Flames
,”
Ann. Rev. Fluid Mech.
,
19
, pp.
237
270
.
32.
Bradley
,
D.
,
Lau
,
A.
, and
Lawes
,
M.
, 1992, “
Flame Stretch Rate as a Determinant of Turbulent Burning Velocity
,”
Philos. Trans. R. Soc. London, Ser. A
,
338
, pp.
359
387
.
33.
Chen
,
J.
, and
Im
,
H.
, 1998, “
Correlation of Flame Speed With Stretch in Turbulent Premixed Methane/Air Flames
,”
Int. Symp. Combustion
,
27
, pp.
819
826
.
34.
Peters
,
N.
, and
Batchelor
,
G.
, 2000,
Turbulent Combustion,
Cambridge University Press
,
Cambridge
.
35.
Kolmogorov
,
A.
, 1991, “
The Local Structure of Turbulence in Incompressible Viscous Fluid for Very Large Reynolds Numbers
,”
Proc. R. Soc. London, Ser. A
,
434
, pp.
9
13
.
36.
Taylor
,
G.
, 1935, “
Statistical Theory of Turbulence - I
,”
Proc. R. Soc. London, Ser. A
,
151
, pp.
421
444
.
37.
Girimaji
,
S.
, and
Pope
,
S.
, 1990, “
Material-Element Deformation in Isotropic Turbulence
,”
J. Fluid Mech
.,
220
, pp.
427
458
.
38.
Steinberg
,
A.
, and
Driscoll
,
J.
, 2009, “
Straining and Wrinkling Processes During Turbulence-Premixed Flame Interaction Measured Using Temporally-Resolved Diagnostics
,”
Combustion Flame
,
156
, pp.
2285
2306
.
39.
Turns
,
S.
, 2000,
An Introduction to Combustion
,
2nd ed.
,
McGraw-Hill
,
New York
.
You do not currently have access to this content.