An optimization study of trapezoidal surface texturing in slider micro-bearings, via computational fluid dynamics (CFD), is presented. The bearings are modeled as micro-channels, consisting of a moving and a stationary wall. The moving wall (rotor) is assumed smooth, while part of the stationary wall (stator) exhibits periodic dimples of trapezoidal form. The extent of the textured part of the stator and the dimple geometry are defined parametrically; thus, a wide range of texturing configurations is considered. Flow simulations are based on the numerical solution of the Navier–Stokes equations for incompressible isothermal flow. To optimize the bearing performance, an optimization problem is formulated and solved by coupling the CFD code with an optimization tool based on genetic algorithms and local search methods. Here, the design variables define the bearing geometry, while load carrying capacity is the objective function to be maximized. Optimized texturing geometries are obtained for the case of parallel bearings for several numbers of dimples, illustrating significant load carrying capacity levels. Further, these optimized texturing patterns are applied to converging bearings for different convergence ratio values; the results demonstrate that, for small and moderate convergence ratios, a substantial increase in load carrying capacity, in comparison to smooth bearings, is obtained. Finally, an optimization study performed at a high convergence ratio shows that, in comparison to the parallel slider, the optimal texturing geometry is substantially different, and that performance improvement over smooth bearings is possible even for steep sliders.

1.
Yang
,
H.
,
Ratchev
,
S.
,
Turitto
,
M.
, and
Segal
,
J.
, 2009, “
Rapid Manufacturing of Non-Assembly Complex Micro-Devices by Microstereolithography
,”
Tsinghua Science and Technology
,
14
, pp.
164
167
.
2.
Brizmer
,
V.
,
Kligerman
,
Y.
, and
Etsion
,
I.
, 2003, “
A Laser Surface Textured Parallel Thrust Bearing
,”
Tribol. Trans.
1040-2004,
46
(
3
), pp.
397
403
.
3.
Andharia
,
P. I.
,
Gupta
,
J. L.
, and
Deheri
,
G. M.
, 2000, “
On the Shape of the Lubricant Film for the Optimum Performance of a Longitudinal Rough Slider Bearing
,”
Ind. Lubr. Tribol.
0036-8792,
52
(
6
), pp.
273
276
.
4.
Papadopoulos
,
C. I.
,
Nikolakopoulos
,
P. G.
, and
Kaiktsis
,
L.
, 2009, “
Flow and Engineering Assessment in Converging Microchannels With Trapezoidal Roughness and Slip
,”
36th Leeds-Lyon Symposium on Tribology: Multi Facets on Tribology
, Lyon, Sept. 1–3.
5.
Cupillard
,
S.
,
Cervantes
,
M. J.
, and
Glavatskih
,
S.
, 2008, “
Pressure Buildup Mechanism in a Textured Inlet of a Hydrodynamic Contact
,”
ASME J. Tribol.
0742-4787,
130
(
2
), p.
021701
.
6.
Buscaglia
,
G. C.
,
Ciuperca
,
I.
, and
Jai
,
M.
, 2007, “
On the Optimization of Surface Textures for Lubricated Contacts
,”
J. Math. Anal. Appl.
0022-247X,
335
(
2
), pp.
1309
1327
.
7.
Dobrica
,
M. B.
,
Fillon
,
M.
,
Pascovici
,
M. D.
, and
Cicone
,
T.
, 2007, “
Texturing Effects in Plane-Inclined Slider Bearings
,”
STLE-ASME International Joint Tribology Conference
, San Diego, Oct. 22–24.
8.
Brajdic-Mitidieri
,
P.
,
Gosman
,
A. D.
,
Ioannides
,
E.
, and
Spikes
,
H. A.
, 2005, “
CFD Analysis of a Low Friction Pocketed Pad Bearing
,”
ASME J. Tribol.
0742-4787,
127
(
4
), pp.
803
812
.
9.
Etsion
,
I.
,
Halperin
,
G.
,
Brizmer
,
V.
, and
Kligerman
,
Y.
, 2004, “
Experimental Investigation of Laser Surface Textured Parallel Thrust Bearings
,”
Tribol. Lett.
1023-8883,
17
(
2
), pp.
295
300
.
10.
Pascovici
,
M. D.
,
Cicone
,
T.
,
Fillon
,
M.
, and
Dobrica
,
M. B.
, 2009, “
Analytical Investigation of a Partially Textured Parallel Slider
,”
Proc. Inst. Mech. Eng., Part J: J. Eng. Tribol.
1350-6501,
223
(
2
), pp.
151
158
.
11.
Sharma
,
R. K.
, and
Pandey
,
R. K.
, 2009, “
Experimental Studies of Pressure Distributions in Finite Slider Bearing With Single Continuous Surface Profiles on the Pads
,”
Tribol. Int.
0301-679X,
42
(
7
), pp.
1040
1045
.
12.
Stephens
,
L. S.
,
Siripuram
,
R.
,
Hayden
,
M.
, and
McCartt
,
B.
, 2004, “
Deterministic Micro Asperities on Bearings and Seals Using a Modified LIGA Process
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
126
(
1
), pp.
147
154
.
13.
Thomsen
,
K.
, and
Klit
,
P.
, 2007, “
Analysis of a Thrust Bearing With Flexible Pads and Flexible Supports
,”
Proceedings of the BALTTRIB 2007 International Scientific Conference
, pp.
174
180
.
14.
Wang
,
X.
,
Zhu
,
J.
,
Li
,
J.
,
Chen
,
W.
, and
Cai
,
L.
, 2007, “
Numerical Analysis of Elasto-Hydrodynamically Lubricated Point Contacts With Three Dimensional Laser Micro-Texturing Asperity
,”
Int. J. Nonlinear Sci. Numer. Simul.
1565-1339,
8
(
4
), pp.
553
559
.
15.
Rahmani
,
R.
,
Shirvani
,
A.
, and
Shirvani
,
H.
, 2007, “
Optimization of Partially Textured Parallel Thrust Bearings with Square-Shaped Micro-Dimples
,”
Tribol. Trans.
1040-2004,
50
(
3
), pp.
401
406
.
16.
Tonder
,
K.
, 1987, “
Effects of Skew Unidirectional Striated Roughness on Hydrodynamic Lubrication
,”
Wear
0043-1648,
115
(
1–2
), pp.
19
30
.
17.
Ozalp
,
A. A.
, and
Umur
,
H.
, 2006, “
Optimum Surface Profile Design and Performance Evaluation of Inclined Slider Bearings
,”
Curr. Sci.
0011-3891,
90
(
11
), pp.
1480
1491
.
18.
Van Ostayen
,
R. A. J.
,
Van Beek
,
A.
, and
Munnig-Schmidt
,
R. H.
, 2007, “
Film Height Optimization of Hydrodynamic Slider Bearings
,”
Proceedings of the ASME/STLE International Joint Tribology Conference, IJTC 2007, PART A
, pp.
237
239
.
19.
Buscaglia
,
G. C.
,
Ausas
,
R. F.
, and
Jai
,
M.
, 2006, “
Optimization Tools in the Analysis of Micro-Textured Lubricated Devices
,”
Inverse Probl. Sci. Eng.
1741-5977,
14
(
4
), pp.
365
378
.
20.
Dobrica
,
M. B.
, and
Fillon
,
M.
, 2009, “
About the Validity of Reynolds Equation and Inertia Effects in Textured Sliders of Infinite Width
,”
Proc. Inst. Mech. Eng., Part J: J. Eng. Tribol.
1350-6501,
223
(
1
), pp.
69
78
.
21.
Stachowiak
,
G. W.
, and
Batchelor
,
A. W.
, 2005,
Engineering Tribology
,
Butterworth and Heinemann
,
Burlington
.
22.
Ravindran
,
A.
,
Ragsdell
,
K. M.
, and
Reklaitis
,
G. V.
, 2006,
Engineering Optimization: Methods and Applications
,
2nd ed.
,
Wiley International
,
New York
.
You do not currently have access to this content.