Most state-of-the-art natural gas-fired combined cycle (NGCC) plants are triple-pressure reheat cycles with efficiencies close to 60%. However, with carbon capture and storage, the efficiency will be penalized by almost 10% units. To limit the energy consumption for a carbon capture NGCC plant, exhaust gas recirculation (EGR) is necessary. Utilizing EGR increases the CO2 content in the gas turbine exhaust while it reduces the flue gas flow to be treated in the capture plant. Nevertheless, due to EGR, the gas turbine will experience a different media with different properties compared with the design case. This study looks into how the turbomachinery reacts to EGR. The work also discusses the potential of further improvements by utilizing pressurized water rather than extraction steam as the heat source for the CO2 stripper. The results show that the required low-pressure level should be elevated to a point close to the intermediate-pressure to achieve optimum efficiency, hence, one pressure level can be omitted. The main tool used for this study is an in-house off-design model based on fully dimensionless groups programmed in the commercially available heat and mass balance program IPSEPRO. The model is based on a GE 109FB machine with a triple-pressure reheat steam cycle.

1.
Fredriksson Möller
,
B.
, 2005, “
A Thermoeconomic Evaluation of CO2 Capture With Focus on Gas Turbine-Based Power Plants
,” Ph.D. thesis, Lund University, Sweden.
2.
Finkenrath
,
M.
,
Ursin
,
T. P.
,
Hoffmann
,
S.
,
Bartlett
,
M.
,
Evulet
,
A.
,
Bowman
,
M. J.
,
Lynghjem
,
A.
, and
Jakobsen
,
J.
, eds., 2007,
Performance and Cost Analysis of Novel Gas Turbine Cycle With CO2 Capture
, ASME Paper No. GT2007-27764.
3.
Botero
,
C.
,
Finkenrath
,
M.
,
Bartlett
,
M.
,
Chu
,
R.
,
Choi
,
G.
, and
Chinn
,
D.
, 2009, “
Redesign, Optimization, and Economic Evaluation of a Natural Gas Combined Cycle With the Best Integrated Technology CO2 Capture
,”
Energy Procedia
,
1
(
1
), pp.
3835
3842
.
4.
Bolland
,
O.
, and
Mathieu
,
P.
, 1998, “
Comparison of Two CO2 Removal Options in Combined Cycle Power Plants
,”
Energy Convers. Manage.
0196-8904,
39
(
16–18
), pp.
1653
1663
.
5.
Chiesa
,
P.
, and
Consonni
,
S.
, 2000, “
Natural Gas Fired Combined Cycles With Low CO2 Emissions
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
429
(
3
), pp.
8
.
6.
Jack
,
A. R.
,
Audus
,
H.
, and
Riemer
,
P. W. F.
, 1992, “
The IEA Greenhouse Gas R&D Programme
,”
Energy Convers. Manage.
0196-8904,
33
(
5–8
), pp.
813
818
.
7.
Kvamsdal
,
H. M.
,
Jordal
,
K.
, and
Bolland
,
O.
, 2007, “
A Quantitative Comparison of Gas Turbine Cycles With CO2 Capture
,”
Energy
0360-5442,
32
(
1
), pp.
10
24
.
8.
Zachary
,
J.
and
Titus
,
S.
, eds., 2008, “
CO2 Capture and Sequestration Options—Impact on Turbomachinery Design
,”
Bechtel Technology Journal
,
1
(
1
), pp.
1
20
.
9.
Mimura
,
T.
,
Shimojo
,
S.
,
Suda
,
T.
,
Iijima
,
M.
, and
Mitsuoka
,
S.
, 1995, “
Research and Development on Energy Saving Technology for Flue Gas Carbon Dioxide Recovery and Steam System in Power Plant
,”
Energy Convers. Manage.
0196-8904,
36
(
6–9
), pp.
397
400
.
10.
Sipöcz
,
N.
, and
Assadi
,
M.
, 2009, “
Combined Cycles With CO2 Capture: Two Alternatives for System Integration
,” ASME Paper No. GT 2009-59595.
11.
Desideri
,
U.
, and
Paolucci
,
A.
, 1999, “
Performance Modelling of a Carbon Dioxide Removal System for Power Plants
,”
Energy Convers. Manage.
0196-8904,
40
(
18
), pp.
1899
1915
.
12.
Singh
,
D.
,
Croiset
,
E.
,
Douglas
,
P. L.
, and
Douglas
,
M. A.
, 2003, “
Techno-Economic Study of CO2 Capture From an Existing Coal-Fired Power Plant: Mea Scrubbing vs. O2/CO2 Recycle Combustion
,”
Energy Convers. Manage.
0196-8904,
44
(
19
), pp.
3073
3091
.
13.
Romeo
,
L. M.
,
Espatolero
,
S.
, and
Bolea
,
I.
, 2008, “
Designing a Supercritical Steam Cycle to Integrate the Energy Requirements of CO2 Amine Scrubbing
,”
Int. J. Greenhouse Gas Control
,
2
(
4
), pp.
563
570
.
14.
Romeo
,
L. M.
,
Bolea
,
I.
, and
Escosa
,
J. M.
, 2008, “
Integration of Power Plant and Amine Scrubbing to Reduce CO2 Capture Costs
,”
Appl. Therm. Eng.
1359-4311,
28
(
8–9
), pp.
1039
1046
.
15.
Oexmann
,
J.
,
Hensel
,
C.
, and
Kather
,
A.
, 2008, “
Post-Combustion CO2-Capture From Coal-Fired Power Plants: Preliminary Evaluation of an Integrated Chemical Absorption Process With Piperazine-Promoted Potassium Carbonate
,”
Int. J. Greenhouse Gas Control
,
2
(
4
), pp.
539
552
.
16.
Tobiesen
,
A.
,
Svendsen
,
H. F.
, and
Hoff
,
K. A.
, 2005, “
Desorber Energy Consumption Amine-Based Absorption Plants
,”
International Journal of Green Energy
,
2
, pp.
201
215
.
17.
Abu-Zahra
,
M. R. M.
,
Schneiders
,
L. H. J.
,
Niederer
,
J. P. M.
,
Feron
,
P. H. M.
, and
Versteeg
,
G. F.
, 2007, “
CO2 Capture From Power Plants: Part I. A Parametric Study of the Technical Performance Based on Monoethanolamine
,”
Int. J. Greenhouse Gas Control
,
1
(
1
), pp.
37
46
.
18.
Aroonwilas
,
A.
, and
Veawab
,
A.
, 2007, “
Integration of CO2 Capture Unit Using Single- and Blended-Amines Into Supercritical Coal-Fired Power Plants: Implications for Emission and Energy Management
,”
Int. J. Greenhouse Gas Control
,
1
(
2
), pp.
143
150
.
19.
Alie
,
C. F.
, 2004, “
CO2 Capture With MEA: Integrating the Absorption Process and Steam Cycle of an Existing Coal-Fired Power Plant
,” MSc. thesis, University of Waterloo, Waterloo, Ontario, Canada.
20.
Gülen
,
S. C.
,
Griffin
,
P. R.
, and
Paolucci
,
S.
, 2002, “
Real-Time On-Line Performance Diagnostics of Heavy-Duty Industrial Gas Turbines
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
124
(
4
), pp.
910
921
.
21.
Elkady
,
A. M.
,
Evulet
,
A. T.
,
Brand
,
A.
,
Ursin
,
T. P.
, and
Lynghjem
,
A.
, 2008, “
Exhaust Gas Recirculation in DLN F-Class Gas Turbines for Post-Combustion CO2 Capture
,”
Proceedings of GT 2008
, pp.
9
12
.
22.
IPSEpro v.4.0, 2003, Simtech Simulation Technology (Simtech), Graz, Austria.
23.
Jonshagen
,
K.
,
Eriksson
,
P.
, and
Genrup
,
M.
, 2009, “
Low-Calorific Fuel Mix in a Large Size Combined Cycle Plant
,” ASME Paper No. GT 2009-59329.
24.
Jonshagen
,
K.
, and
Genrup
,
M.
, 2010, “
Improved Load Control for a Steam Cycle Combined Heat and Power Plant
,”
Energy
0360-5442,
35
(
4
), pp.
1694
1700
.
25.
Walsh
,
P. P.
, and
Fletcher
,
P.
, 2004,
Gas Turbine Performance
,
2nd ed.
,
Bleckell
,
Oxford, UK
.
26.
Eldrid
,
R.
,
Kaufman
,
L.
, and
Marks
,
P.
, 2001, “
The 7fb: The Next Evolution of the F Gas Turbine
,” Technical Report No. 4194, Schnenectady, NY.
27.
Kohl
,
A. L.
, and
Nielsen
,
R. B.
, 1997,
Gas Purification
,
5th ed.
,
Gulf
,
Houston, TX
.
28.
Botero
,
C.
,
Finkenrath
,
M.
,
Belloni
,
C.
, and
Bertolo
,
S.
,
D’ercole
,
M.
,
Gori
,
E.
, and
Tacconelli
,
R.
, 2009, “
Thermoeconomic Evaluation of CO2 Compression Strategies for Post-Combustion CO2 Capture Applications
,”
Proceedings of ASME Turbo Expo 2009
.
29.
Moore
,
J. J.
,
Nored
,
M. G.
,
Gernentz
,
R. S.
, and
Brun
,
K.
, 2007, “
Novel Concepts for the Compression of Large Volumes of Carbon Dioxide
,” Technical Report, Southwest Research Institute.
30.
Romeo
,
L. M.
,
Bolea
,
I.
,
Lara
,
Y.
, and
Escosa
,
J. M.
, 2009, “
Optimization of Intercooling Compression in CO2 Capture Systems
,”
Appl. Therm. Eng.
1359-4311,
29
(
8–9
), pp.
1744
1751
.
You do not currently have access to this content.