In this study, numerical simulations of the vehicle cooling system and the vehicle powertrain system of a virtual heavy duty tracked series hybrid electric vehicle (SHEV) is developed to investigate the thermal responses and power consumptions of the cooling system. The output data from the powertrain system simulation are fed into the cooling system simulation to provide the operating conditions of powertrain components. Three different cooling system architectures constructed with different concepts are modeled and the factors that affect the performance and power consumption of each cooling system are identified and compared with each other. The results show that the cooling system architecture of the SHEV should be developed considering various cooling requirements of powertrain components, power management strategy, performance, parasitic power consumption, and the effect of driving conditions. It is also demonstrated that a numerical model of the SHEV cooling system is an efficient tool to assess design concepts and architectures of the system during the early stage of system development.

1.
Cho
,
H.
,
Jung
,
D.
,
Filipi
,
Z. S.
,
Assanis
,
D. N.
,
Vanderslice
,
J.
, and
Bryzik
,
W.
, 2007, “
Application of Controllable Electric Coolant Pump for Fuel Economy and Cooling Performance Improvement
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
129
, pp.
239
244
.
2.
Traci
,
R. M.
, and
Acebal
,
R.
, 1999, “
Integrated Thermal Management of a Hybrid Electric Vehicle
,”
IEEE Trans. Magn.
0018-9464,
35
, pp.
479
483
.
3.
Park
,
C. W.
, and
Jaura
,
A. K.
, 2002, “
Thermal Analysis of Cooling System Hybrid Electric Vehicles
,” SAE Paper No. 2002-01-0710.
4.
Michelena
,
N.
,
Louca
,
L.
,
Kokkolaras
,
M.
,
Lin
,
C.
,
Jung
,
D.
,
Filipi
,
Z.
,
Assanis
,
D. N.
,
Papalambros
,
P.
,
Peng
,
H.
,
Stein
,
J.
, and
Feury
,
M.
, 2001, “
Design of an Advanced Heavy Tactical Truck: A Target Cascading Case Study
,” SAE Paper No. 2001-01-2793.
5.
Kokkolaras
,
M.
,
Louca
,
L. S.
,
Delagrammatikas
,
G. J.
,
Michelena
,
N. F.
,
Filipi
,
Z. S.
,
Papalambros
,
P. Y.
,
Stein
,
J. L.
, and
Assanis
,
D. N.
, 2004, “
Simulation-Based Optimal Design of Heavy Trucks by Model-Based Decomposition: An Extensive Analytical Target Cascading Case Study
,”
Int. J. Heavy Vehicle Systems
1744-232X,
11
(
3/4
), pp.
403
433
.
6.
Lin
,
C. -C.
,
Filipi
,
Z.
,
Wang
,
Y.
,
Louca
,
L.
,
Peng
,
H.
,
Assanis
,
D.
, and
Stein
,
J.
, 2001, “
Integrated, Feed-Forward Hybrid Electric Vehicle Simulation in SIMULINK and Its Use for Power Management Studies
,” SAE Paper No. 2001-01-1334.
7.
Assanis
,
D. N.
,
Filipi
,
Z. S.
,
Fiveland
,
S. B.
, and
Syrimis
,
M.
, 2000, “
A Methodology for Cycle-by-Cycle Transient Heat Release Analysis in a Turbocharged Direct Injection Diesel Engine
,” SAE Paper No. 2000-01-1185.
8.
Wiegman
,
H. L. N.
, and
Vandenput
,
A. J. A.
, 1998, “
Battery State Control Techniques for Charge Sustaining Applications
,” SAE Paper No. 981129.
9.
Brooker
,
A.
,
Hendricks
,
T.
,
Johnson
,
A.
,
Kelly
,
K.
,
Markel
,
T.
,
O’Keefe
,
M.
,
Sprik
,
S.
, and
Wipke
,
K.
, 2000,
ADVISOR V3.0 Documentation
,
National Renewable Energy Laboratory
,
Golden, CO
.
10.
Park
,
S.
, and
Jung
,
D.
, 2008, “
Numerical Modeling and Simulation of the Vehicle Cooling System for a Heavy Duty Series Hybrid Electric Vehicle
,” SAE Paper No. 2008-01-2421.
11.
White
,
F. M.
, 1994,
Fluid Mechanics
,
3rd ed.
,
McGraw-Hill
,
New York
.
12.
Jung
,
D.
, and
Assanis
,
D. N.
, 2006, “
Numerical Modeling of Cross Flow Compact Heat Exchanger With Louvered Fins Using Thermal Resistance Concept
,” SAE Paper No. 2006-01-0726.
13.
Incropera
,
F. P.
, and
DeWitt
,
D. P.
, 2002,
Fundamentals of Heat and Mass Transfer
,
5th ed.
,
Wiley
,
New York
.
You do not currently have access to this content.