Experimental and numerical studies were performed to investigate the simultaneous reduction in NOx and CO for stoichiometric diesel combustion with a three-way catalyst. A single-cylinder engine was used for the experiments and KIVA simulations were used in order to characterize the combustion efficiency and emissions of throttled stoichiometric diesel combustion at 0.7 bar boost pressure and 90 MPa injection pressure. In addition, the efficiency of emission conversion with three-way catalysts in stoichiometric diesel combustion was investigated experimentally. The results showed CO and NOx emissions can be controlled with the three-way catalyst in spite of the fact that CO increases more at high equivalence ratios compared with conventional diesel combustion (i.e., lean combustion). At a stoichiometric operation, the three-way catalyst reduced CO and NOx emissions by up to 95%, which achieves lower emissions compared with conventional diesel combustion or low temperature diesel combustion, while keeping better fuel consumption than a comparable gasoline engine.

1.
Park
,
S. W.
, and
Reitz
,
R. D.
, 2007, “
Numerical Study on the Low Emission Window of Homogeneous Charge Compression Ignition Diesel Combustion
,”
Combust. Sci. Technol.
0010-2202,
179
(
11
), pp.
2279
2307
.
2.
Suzuki
,
H.
,
Koike
,
N.
, and
Odaka
,
M.
, 1998, “
Combustion Control Method of Homogeneous Charge Diesel Engines
,” SAE Technical Paper No. 980509.
3.
Simescu
,
S.
,
Fiveland
,
S. B.
, and
Dodge
,
L. G.
, 2003, “
An Experimental Investigation of PCCI-DI Combustion and Emissions in Heavy-Duty Diesel Engine
,” SAE Technical Paper No. 2003-01-0345.
4.
Frias
,
J. M.
,
Aceves
,
S. M.
,
Flowers
,
D.
,
Smith
,
J. R.
, and
Dibble
,
R.
, 2000, “
HCCI Engine Control by Thermal Management
,” SAE Technical Paper No. 2000-01-2869.
5.
Kimura
,
S.
,
Ogawa
,
H.
,
Matsui
,
Y.
, and
Enomoto
,
Y.
, 2002, “
An Experimental Analysis of Low-Temperature and Premixed Combustion for Simultaneous Reduction of NOx and Particulate Emissions in Direct Injection Diesel Engines
,”
Int. J. Engine Res.
1468-0874,
3
(
4
), pp.
249
259
.
6.
Opat
,
R.
,
Ra
,
Y.
,
Gonzalez
,
D. M. A.
,
Krieger
,
R.
,
Reitz
,
R. D.
,
Foster
,
D. E.
,
Siewert
,
R.
, and
Durrett
,
R.
, 2007, “
Investigation of Mixing and Temperature Effects on HC/CO Emissions for Highly Dilute Low Temperature Combustion in a Light Duty Diesel Engine
,” SAE Paper No. 2007-01-0193.
7.
Vishwanathan
,
G.
, and
Reitz
,
R. D.
, 2008, “
Numerical Predictions of Diesel Flame Lift-Off Length and Soot Distributions Under Low Temperature Combustion Conditions
,” SAE Paper No. 2008-01-1331.
8.
Pickett
,
L.
, 2005, “
Low Flame Temperature Limits for Mixing-Controlled Diesel Combustion
,”
Proc. Combust. Inst.
1540-7489,
30
, pp.
2727
2735
.
9.
Pfeifer
,
M.
,
Votsmeier
,
M.
,
Kogel
,
M.
,
Spurk
,
P. C.
,
Lox
,
E. S.
, and
Knoth
,
J. F.
, 2005, “
The Second Generation of Catalyzed Diesel Particulate Filter Systems for Passenger Cars—Particulate Filters With Integrated Oxidation Catalyst Function
,” SAE Technical Paper No. 2005-01-1756.
10.
Ingram-Ogunwumi
,
R. S.
,
Dong
,
Q.
,
Murrin
,
T. A.
,
Bhargava
,
R. Y.
,
Warkins
,
J. L.
, and
Heibel
,
A. K.
, 2007, “
Performance Evaluations of Aluminum Titanate Diesel Particulate Filters
,” SAE Technical Paper No. 2007-01-0656.
11.
Theis
,
J. R.
,
Ura
,
J. A.
,
Li
,
J. J.
,
Surnilla
,
G. G.
,
Roth
,
J. M.
, and
Goralski
,
C. T.
, 2003, “
NOx Release Characteristics of Lean NOx Traps During Rich Purges
,” SAE Technical Paper No. 2003-01-1159.
12.
Lee
,
S.
,
Gonzalez
D. M. A.
, and
Reitz
,
R. D.
, 2007, “
Effects of Engine Operating Parameters on Near Stoichiometric Diesel Combustion Characteristics
,” SAE Technical Paper No. 2007-01-0121.
13.
Lee
,
S.
,
Gonzalez
,
D. M. A.
, and
Reitz
,
R. D.
, 2006, “
Stoichiometric Combustion in a HSDI Diesel Engine to Allow Use of a Three-Way Exhaust Catalyst
,” SAE Technical Paper No. 2006-01-1148.
14.
Park
,
S. W.
, and
Reitz
,
R. D.
, 2008, “
Modeling the Effect of Injector Nozzle-Hole Layout on Diesel Engine Fuel Consumption and Emissions
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
130
, p.
032805
.
15.
Park
,
S. W.
, and
Reitz
,
R. D.
, 2008, “
Optimization of Fuel/Air Mixture Formation for Stoichiometric Diesel Combustion Using a 2-Spray-Angle Group-Hole Nozzle
,”
Fuel
0016-2361,
88
, pp.
843
852
.
16.
Chase
,
S.
,
Nevin
,
R.
,
Winsor
,
R.
, and
Baumgard
,
K.
, 2007, “
Stoichiometric Compression Ignition (SCI) Engine
,” SAE Technical Paper No. 2007-01-4224.
17.
Kim
,
J.
,
Park
,
S. W.
,
Andrie
,
M.
,
Reitz
,
R. D.
, and
Sung
,
K.
, 2009, “
Experimental Investigation of Intake Condition and Group-Hole Nozzle Effects on Fuel Economy and Combustion Noise for Stoichiometric Diesel Combustion in an HSDI Diesel Engine
,” SAE Technical Paper No. 09PFL-0799.
18.
Amsden
,
A. A.
, 1999, “
KIVA-3V RELEASE 2, Improvement to KIVA-3V
,” Los Alamos National Laboratory Paper No. LA-UR-99-915.
19.
Kong
,
S. -C.
,
Kim
,
H. -J.
,
Reitz
,
R. D.
, and
Kim
,
Y.
, 2007, “
Comparison of Combustion Simulations Using a Representative Interactive Flamelet Model and Direct Integration of CFD With Detailed Chemistry
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
129
, pp.
245
251
.
20.
Ra
,
Y.
, and
Reitz
,
R. D.
, 2008, “
A Reduced Chemical Kinetic Model for IC Engine Combustion Simulations With Primary Reference Fuels
,”
Combust. Flame
0010-2180,
155
, pp.
713
738
.
21.
Park
,
S. W.
,
Abani
,
N.
,
Reitz
,
R. D.
,
Suh
,
H. K.
, and
Lee
,
C. S.
, 2009, “
Modeling of Group-Hole Nozzle Sprays Using Grid-Size, Hole-Location, and Time-Step Independent Models
,”
Atomization Sprays
1044-5110,
19
, pp.
567
582
.
22.
Abani
,
N.
,
Munnannur
,
A.
, and
Reitz
,
R. D.
, 2008, “
Reduction of Numerical Parameter Dependencies in Diesel Spray Models
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
130
, p.
032809
.
23.
Munnannur
,
A.
, 2007, “
Droplet Collision Modeling in Multi-Dimensional Engine Spray Computations
,” Ph.D. thesis, Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, WI.
24.
Beale
,
J. C.
, and
Reitz
,
R. D.
, 1999, “
Modeling Spray Atomization Kelvin-Helmholtz/Rayleigh-Taylor Hybrid Model
,”
Atomization Sprays
1044-5110,
9
, pp.
623
650
.
25.
Han
,
Z.
, and
Reitz
,
R. D.
, 1995, “
Turbulence Modeling of Internal Combustion Engines Using RNG k-e Models
,”
Combust. Sci. Technol.
0010-2202,
106
, pp.
267
295
.
26.
RICARDO WAVE 7.0.2. Manual
, 2008, www.ricardo.comwww.ricardo.com
27.
Sun
,
Y.
, and
Reitz
,
R. D.
, 2006, “
Modeling Diesel Engine NOx and Soot Reduction With Optimized Two-Stage Combustion
,” SAE Paper No. 2006-01-0027.
28.
Hiroyasu
,
H.
, and
Arai
,
M.
, 1990, “
Structure of Fuel Sprays in Diesel Engines
,” SAE Technical Paper No. 900475.
29.
Karl
,
G.
,
Kemmler
,
R.
,
Bargende
,
M.
, and
Abthoff
,
J.
, 1997, “
Analysis of a Direct Injected Gasoline Engine
,” SAE Technical Paper No. 970624.
30.
Onodera
,
H.
,
Nakamura
,
M.
,
Takaya
,
M.
,
Akama
,
H.
,
Itoyama
,
H.
, and
Kimura
,
S.
, 2008, “
Development of a Diesel Emission Catalyst System for Meeting US-SULEV Standards
,” SAE Technical Paper No. 2008-01-0449.
You do not currently have access to this content.